| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fucoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fucoppc.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
fucoppc.r |
⊢ 𝑅 = ( oppCat ‘ 𝑄 ) |
| 5 |
|
fucoppc.s |
⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) |
| 6 |
|
fucoppc.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 7 |
|
fucoppc.f |
⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 8 |
|
fucoppc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 9 |
|
fucoppcid.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) |
| 10 |
9
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 11 |
10
|
funcrcl3 |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 12 |
|
eqid |
⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) |
| 13 |
2 12
|
oppcid |
⊢ ( 𝐷 ∈ Cat → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 14 |
11 13
|
syl |
⊢ ( 𝜑 → ( Id ‘ 𝑃 ) = ( Id ‘ 𝐷 ) ) |
| 15 |
7 9
|
opf11 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1st ‘ 𝑋 ) ) |
| 16 |
14 15
|
coeq12d |
⊢ ( 𝜑 → ( ( Id ‘ 𝑃 ) ∘ ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 17 |
|
eqid |
⊢ ( Id ‘ 𝑆 ) = ( Id ‘ 𝑆 ) |
| 18 |
|
eqid |
⊢ ( Id ‘ 𝑃 ) = ( Id ‘ 𝑃 ) |
| 19 |
1 2
|
oppff1 |
⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) |
| 20 |
|
f1f |
⊢ ( ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) –1-1→ ( 𝑂 Func 𝑃 ) → ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) |
| 22 |
7
|
feq1d |
⊢ ( 𝜑 → ( 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ↔ ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) ) |
| 23 |
21 22
|
mpbiri |
⊢ ( 𝜑 → 𝐹 : ( 𝐶 Func 𝐷 ) ⟶ ( 𝑂 Func 𝑃 ) ) |
| 24 |
23 9
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑂 Func 𝑃 ) ) |
| 25 |
5 17 18 24
|
fucid |
⊢ ( 𝜑 → ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) = ( ( Id ‘ 𝑃 ) ∘ ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ) ) |
| 26 |
10
|
funcrcl2 |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 27 |
3 26 11
|
fuccat |
⊢ ( 𝜑 → 𝑄 ∈ Cat ) |
| 28 |
|
eqid |
⊢ ( Id ‘ 𝑄 ) = ( Id ‘ 𝑄 ) |
| 29 |
4 28
|
oppcid |
⊢ ( 𝑄 ∈ Cat → ( Id ‘ 𝑅 ) = ( Id ‘ 𝑄 ) ) |
| 30 |
27 29
|
syl |
⊢ ( 𝜑 → ( Id ‘ 𝑅 ) = ( Id ‘ 𝑄 ) ) |
| 31 |
30
|
fveq1d |
⊢ ( 𝜑 → ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) = ( ( Id ‘ 𝑄 ) ‘ 𝑋 ) ) |
| 32 |
3 28 12 9
|
fucid |
⊢ ( 𝜑 → ( ( Id ‘ 𝑄 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 33 |
31 32
|
eqtrd |
⊢ ( 𝜑 → ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 34 |
3 6 12 9
|
fucidcl |
⊢ ( 𝜑 → ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ∈ ( 𝑋 𝑁 𝑋 ) ) |
| 35 |
8 9 9 33 34
|
opf2 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝐷 ) ∘ ( 1st ‘ 𝑋 ) ) ) |
| 36 |
16 25 35
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑋 ) ‘ ( ( Id ‘ 𝑅 ) ‘ 𝑋 ) ) = ( ( Id ‘ 𝑆 ) ‘ ( 𝐹 ‘ 𝑋 ) ) ) |