| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fucoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fucoppc.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucoppc.r |
|- R = ( oppCat ` Q ) |
| 5 |
|
fucoppc.s |
|- S = ( O FuncCat P ) |
| 6 |
|
fucoppc.n |
|- N = ( C Nat D ) |
| 7 |
|
fucoppc.f |
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
| 8 |
|
fucoppc.g |
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 9 |
|
fucoppcid.x |
|- ( ph -> X e. ( C Func D ) ) |
| 10 |
9
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func D ) ( 2nd ` X ) ) |
| 11 |
10
|
funcrcl3 |
|- ( ph -> D e. Cat ) |
| 12 |
|
eqid |
|- ( Id ` D ) = ( Id ` D ) |
| 13 |
2 12
|
oppcid |
|- ( D e. Cat -> ( Id ` P ) = ( Id ` D ) ) |
| 14 |
11 13
|
syl |
|- ( ph -> ( Id ` P ) = ( Id ` D ) ) |
| 15 |
7 9
|
opf11 |
|- ( ph -> ( 1st ` ( F ` X ) ) = ( 1st ` X ) ) |
| 16 |
14 15
|
coeq12d |
|- ( ph -> ( ( Id ` P ) o. ( 1st ` ( F ` X ) ) ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 17 |
|
eqid |
|- ( Id ` S ) = ( Id ` S ) |
| 18 |
|
eqid |
|- ( Id ` P ) = ( Id ` P ) |
| 19 |
1 2
|
oppff1 |
|- ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) |
| 20 |
|
f1f |
|- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) |
| 21 |
19 20
|
ax-mp |
|- ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) |
| 22 |
7
|
feq1d |
|- ( ph -> ( F : ( C Func D ) --> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) ) |
| 23 |
21 22
|
mpbiri |
|- ( ph -> F : ( C Func D ) --> ( O Func P ) ) |
| 24 |
23 9
|
ffvelcdmd |
|- ( ph -> ( F ` X ) e. ( O Func P ) ) |
| 25 |
5 17 18 24
|
fucid |
|- ( ph -> ( ( Id ` S ) ` ( F ` X ) ) = ( ( Id ` P ) o. ( 1st ` ( F ` X ) ) ) ) |
| 26 |
10
|
funcrcl2 |
|- ( ph -> C e. Cat ) |
| 27 |
3 26 11
|
fuccat |
|- ( ph -> Q e. Cat ) |
| 28 |
|
eqid |
|- ( Id ` Q ) = ( Id ` Q ) |
| 29 |
4 28
|
oppcid |
|- ( Q e. Cat -> ( Id ` R ) = ( Id ` Q ) ) |
| 30 |
27 29
|
syl |
|- ( ph -> ( Id ` R ) = ( Id ` Q ) ) |
| 31 |
30
|
fveq1d |
|- ( ph -> ( ( Id ` R ) ` X ) = ( ( Id ` Q ) ` X ) ) |
| 32 |
3 28 12 9
|
fucid |
|- ( ph -> ( ( Id ` Q ) ` X ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 33 |
31 32
|
eqtrd |
|- ( ph -> ( ( Id ` R ) ` X ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 34 |
3 6 12 9
|
fucidcl |
|- ( ph -> ( ( Id ` D ) o. ( 1st ` X ) ) e. ( X N X ) ) |
| 35 |
8 9 9 33 34
|
opf2 |
|- ( ph -> ( ( X G X ) ` ( ( Id ` R ) ` X ) ) = ( ( Id ` D ) o. ( 1st ` X ) ) ) |
| 36 |
16 25 35
|
3eqtr4rd |
|- ( ph -> ( ( X G X ) ` ( ( Id ` R ) ` X ) ) = ( ( Id ` S ) ` ( F ` X ) ) ) |