| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
|- O = ( oppCat ` C ) |
| 2 |
|
fucoppc.p |
|- P = ( oppCat ` D ) |
| 3 |
|
fucoppc.q |
|- Q = ( C FuncCat D ) |
| 4 |
|
fucoppc.r |
|- R = ( oppCat ` Q ) |
| 5 |
|
fucoppc.s |
|- S = ( O FuncCat P ) |
| 6 |
|
fucoppc.n |
|- N = ( C Nat D ) |
| 7 |
|
fucoppc.f |
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) |
| 8 |
|
fucoppc.g |
|- ( ph -> G = ( x e. ( C Func D ) , y e. ( C Func D ) |-> ( _I |` ( y N x ) ) ) ) |
| 9 |
|
fucoppcco.a |
|- ( ph -> A e. ( X ( Hom ` R ) Y ) ) |
| 10 |
|
fucoppcco.b |
|- ( ph -> B e. ( Y ( Hom ` R ) Z ) ) |
| 11 |
|
eqid |
|- ( O Nat P ) = ( O Nat P ) |
| 12 |
|
eqid |
|- ( Base ` C ) = ( Base ` C ) |
| 13 |
1 12
|
oppcbas |
|- ( Base ` C ) = ( Base ` O ) |
| 14 |
|
eqid |
|- ( comp ` P ) = ( comp ` P ) |
| 15 |
|
eqid |
|- ( comp ` S ) = ( comp ` S ) |
| 16 |
3 6
|
fuchom |
|- N = ( Hom ` Q ) |
| 17 |
16 4
|
oppchom |
|- ( X ( Hom ` R ) Y ) = ( Y N X ) |
| 18 |
9 17
|
eleqtrdi |
|- ( ph -> A e. ( Y N X ) ) |
| 19 |
6
|
natrcl |
|- ( A e. ( Y N X ) -> ( Y e. ( C Func D ) /\ X e. ( C Func D ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( Y e. ( C Func D ) /\ X e. ( C Func D ) ) ) |
| 21 |
20
|
simprd |
|- ( ph -> X e. ( C Func D ) ) |
| 22 |
20
|
simpld |
|- ( ph -> Y e. ( C Func D ) ) |
| 23 |
1 2 6 7 21 22
|
fucoppclem |
|- ( ph -> ( Y N X ) = ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) ) |
| 24 |
18 23
|
eleqtrd |
|- ( ph -> A e. ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) ) |
| 25 |
16 4
|
oppchom |
|- ( Y ( Hom ` R ) Z ) = ( Z N Y ) |
| 26 |
10 25
|
eleqtrdi |
|- ( ph -> B e. ( Z N Y ) ) |
| 27 |
6
|
natrcl |
|- ( B e. ( Z N Y ) -> ( Z e. ( C Func D ) /\ Y e. ( C Func D ) ) ) |
| 28 |
26 27
|
syl |
|- ( ph -> ( Z e. ( C Func D ) /\ Y e. ( C Func D ) ) ) |
| 29 |
28
|
simpld |
|- ( ph -> Z e. ( C Func D ) ) |
| 30 |
1 2 6 7 22 29
|
fucoppclem |
|- ( ph -> ( Z N Y ) = ( ( F ` Y ) ( O Nat P ) ( F ` Z ) ) ) |
| 31 |
26 30
|
eleqtrd |
|- ( ph -> B e. ( ( F ` Y ) ( O Nat P ) ( F ` Z ) ) ) |
| 32 |
5 11 13 14 15 24 31
|
fucco |
|- ( ph -> ( B ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) A ) = ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) ) |
| 33 |
|
eqidd |
|- ( ph -> B = B ) |
| 34 |
8 22 29 33 26
|
opf2 |
|- ( ph -> ( ( Y G Z ) ` B ) = B ) |
| 35 |
|
eqidd |
|- ( ph -> A = A ) |
| 36 |
8 21 22 35 18
|
opf2 |
|- ( ph -> ( ( X G Y ) ` A ) = A ) |
| 37 |
34 36
|
oveq12d |
|- ( ph -> ( ( ( Y G Z ) ` B ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) ( ( X G Y ) ` A ) ) = ( B ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) A ) ) |
| 38 |
|
eqid |
|- ( comp ` D ) = ( comp ` D ) |
| 39 |
|
eqid |
|- ( comp ` Q ) = ( comp ` Q ) |
| 40 |
3 6 12 38 39 26 18
|
fucco |
|- ( ph -> ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) = ( z e. ( Base ` C ) |-> ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) ) |
| 41 |
3
|
fucbas |
|- ( C Func D ) = ( Base ` Q ) |
| 42 |
41 39 4 21 22 29
|
oppcco |
|- ( ph -> ( B ( <. X , Y >. ( comp ` R ) Z ) A ) = ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) ) |
| 43 |
3 6 39 26 18
|
fuccocl |
|- ( ph -> ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) e. ( Z N X ) ) |
| 44 |
8 21 29 42 43
|
opf2 |
|- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( A ( <. Z , Y >. ( comp ` Q ) X ) B ) ) |
| 45 |
7 21
|
opf11 |
|- ( ph -> ( 1st ` ( F ` X ) ) = ( 1st ` X ) ) |
| 46 |
45
|
fveq1d |
|- ( ph -> ( ( 1st ` ( F ` X ) ) ` z ) = ( ( 1st ` X ) ` z ) ) |
| 47 |
7 22
|
opf11 |
|- ( ph -> ( 1st ` ( F ` Y ) ) = ( 1st ` Y ) ) |
| 48 |
47
|
fveq1d |
|- ( ph -> ( ( 1st ` ( F ` Y ) ) ` z ) = ( ( 1st ` Y ) ` z ) ) |
| 49 |
46 48
|
opeq12d |
|- ( ph -> <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. = <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ) |
| 50 |
7 29
|
opf11 |
|- ( ph -> ( 1st ` ( F ` Z ) ) = ( 1st ` Z ) ) |
| 51 |
50
|
fveq1d |
|- ( ph -> ( ( 1st ` ( F ` Z ) ) ` z ) = ( ( 1st ` Z ) ` z ) ) |
| 52 |
49 51
|
oveq12d |
|- ( ph -> ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) = ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ) |
| 53 |
52
|
oveqd |
|- ( ph -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) ) |
| 54 |
53
|
adantr |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) ) |
| 55 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 56 |
21
|
func1st2nd |
|- ( ph -> ( 1st ` X ) ( C Func D ) ( 2nd ` X ) ) |
| 57 |
12 55 56
|
funcf1 |
|- ( ph -> ( 1st ` X ) : ( Base ` C ) --> ( Base ` D ) ) |
| 58 |
57
|
ffvelcdmda |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` X ) ` z ) e. ( Base ` D ) ) |
| 59 |
22
|
func1st2nd |
|- ( ph -> ( 1st ` Y ) ( C Func D ) ( 2nd ` Y ) ) |
| 60 |
12 55 59
|
funcf1 |
|- ( ph -> ( 1st ` Y ) : ( Base ` C ) --> ( Base ` D ) ) |
| 61 |
60
|
ffvelcdmda |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` Y ) ` z ) e. ( Base ` D ) ) |
| 62 |
29
|
func1st2nd |
|- ( ph -> ( 1st ` Z ) ( C Func D ) ( 2nd ` Z ) ) |
| 63 |
12 55 62
|
funcf1 |
|- ( ph -> ( 1st ` Z ) : ( Base ` C ) --> ( Base ` D ) ) |
| 64 |
63
|
ffvelcdmda |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( 1st ` Z ) ` z ) e. ( Base ` D ) ) |
| 65 |
55 38 2 58 61 64
|
oppcco |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` X ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` P ) ( ( 1st ` Z ) ` z ) ) ( A ` z ) ) = ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) |
| 66 |
54 65
|
eqtrd |
|- ( ( ph /\ z e. ( Base ` C ) ) -> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) = ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) |
| 67 |
66
|
mpteq2dva |
|- ( ph -> ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) = ( z e. ( Base ` C ) |-> ( ( A ` z ) ( <. ( ( 1st ` Z ) ` z ) , ( ( 1st ` Y ) ` z ) >. ( comp ` D ) ( ( 1st ` X ) ` z ) ) ( B ` z ) ) ) ) |
| 68 |
40 44 67
|
3eqtr4d |
|- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( z e. ( Base ` C ) |-> ( ( B ` z ) ( <. ( ( 1st ` ( F ` X ) ) ` z ) , ( ( 1st ` ( F ` Y ) ) ` z ) >. ( comp ` P ) ( ( 1st ` ( F ` Z ) ) ` z ) ) ( A ` z ) ) ) ) |
| 69 |
32 37 68
|
3eqtr4rd |
|- ( ph -> ( ( X G Z ) ` ( B ( <. X , Y >. ( comp ` R ) Z ) A ) ) = ( ( ( Y G Z ) ` B ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` S ) ( F ` Z ) ) ( ( X G Y ) ` A ) ) ) |