Metamath Proof Explorer


Theorem fucoppclem

Description: Lemma for fucoppc . (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses fucoppclem.o
|- O = ( oppCat ` C )
fucoppclem.p
|- P = ( oppCat ` D )
fucoppclem.n
|- N = ( C Nat D )
fucoppclem.f
|- ( ph -> F = ( oppFunc |` ( C Func D ) ) )
fucoppclem.x
|- ( ph -> X e. ( C Func D ) )
fucoppclem.y
|- ( ph -> Y e. ( C Func D ) )
Assertion fucoppclem
|- ( ph -> ( Y N X ) = ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) )

Proof

Step Hyp Ref Expression
1 fucoppclem.o
 |-  O = ( oppCat ` C )
2 fucoppclem.p
 |-  P = ( oppCat ` D )
3 fucoppclem.n
 |-  N = ( C Nat D )
4 fucoppclem.f
 |-  ( ph -> F = ( oppFunc |` ( C Func D ) ) )
5 fucoppclem.x
 |-  ( ph -> X e. ( C Func D ) )
6 fucoppclem.y
 |-  ( ph -> Y e. ( C Func D ) )
7 eqid
 |-  ( O Nat P ) = ( O Nat P )
8 4 fveq1d
 |-  ( ph -> ( F ` Y ) = ( ( oppFunc |` ( C Func D ) ) ` Y ) )
9 6 fvresd
 |-  ( ph -> ( ( oppFunc |` ( C Func D ) ) ` Y ) = ( oppFunc ` Y ) )
10 8 9 eqtrd
 |-  ( ph -> ( F ` Y ) = ( oppFunc ` Y ) )
11 4 fveq1d
 |-  ( ph -> ( F ` X ) = ( ( oppFunc |` ( C Func D ) ) ` X ) )
12 5 fvresd
 |-  ( ph -> ( ( oppFunc |` ( C Func D ) ) ` X ) = ( oppFunc ` X ) )
13 11 12 eqtrd
 |-  ( ph -> ( F ` X ) = ( oppFunc ` X ) )
14 5 func1st2nd
 |-  ( ph -> ( 1st ` X ) ( C Func D ) ( 2nd ` X ) )
15 14 funcrcl2
 |-  ( ph -> C e. Cat )
16 14 funcrcl3
 |-  ( ph -> D e. Cat )
17 1 2 3 7 10 13 15 16 natoppfb
 |-  ( ph -> ( Y N X ) = ( ( F ` X ) ( O Nat P ) ( F ` Y ) ) )