Metamath Proof Explorer


Theorem fucoppcco

Description: The opposite category of functors is compatible with the category of opposite functors in terms of composition. (Contributed by Zhi Wang, 18-Nov-2025)

Ref Expression
Hypotheses fucoppc.o O = oppCat C
fucoppc.p P = oppCat D
fucoppc.q Q = C FuncCat D
fucoppc.r R = oppCat Q
fucoppc.s S = O FuncCat P
fucoppc.n N = C Nat D
fucoppc.f No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
fucoppc.g φ G = x C Func D , y C Func D I y N x
fucoppcco.a φ A X Hom R Y
fucoppcco.b φ B Y Hom R Z
Assertion fucoppcco φ X G Z B X Y comp R Z A = Y G Z B F X F Y comp S F Z X G Y A

Proof

Step Hyp Ref Expression
1 fucoppc.o O = oppCat C
2 fucoppc.p P = oppCat D
3 fucoppc.q Q = C FuncCat D
4 fucoppc.r R = oppCat Q
5 fucoppc.s S = O FuncCat P
6 fucoppc.n N = C Nat D
7 fucoppc.f Could not format ( ph -> F = ( oppFunc |` ( C Func D ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |-
8 fucoppc.g φ G = x C Func D , y C Func D I y N x
9 fucoppcco.a φ A X Hom R Y
10 fucoppcco.b φ B Y Hom R Z
11 eqid O Nat P = O Nat P
12 eqid Base C = Base C
13 1 12 oppcbas Base C = Base O
14 eqid comp P = comp P
15 eqid comp S = comp S
16 3 6 fuchom N = Hom Q
17 16 4 oppchom X Hom R Y = Y N X
18 9 17 eleqtrdi φ A Y N X
19 6 natrcl A Y N X Y C Func D X C Func D
20 18 19 syl φ Y C Func D X C Func D
21 20 simprd φ X C Func D
22 20 simpld φ Y C Func D
23 1 2 6 7 21 22 fucoppclem φ Y N X = F X O Nat P F Y
24 18 23 eleqtrd φ A F X O Nat P F Y
25 16 4 oppchom Y Hom R Z = Z N Y
26 10 25 eleqtrdi φ B Z N Y
27 6 natrcl B Z N Y Z C Func D Y C Func D
28 26 27 syl φ Z C Func D Y C Func D
29 28 simpld φ Z C Func D
30 1 2 6 7 22 29 fucoppclem φ Z N Y = F Y O Nat P F Z
31 26 30 eleqtrd φ B F Y O Nat P F Z
32 5 11 13 14 15 24 31 fucco φ B F X F Y comp S F Z A = z Base C B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z
33 eqidd φ B = B
34 8 22 29 33 26 opf2 φ Y G Z B = B
35 eqidd φ A = A
36 8 21 22 35 18 opf2 φ X G Y A = A
37 34 36 oveq12d φ Y G Z B F X F Y comp S F Z X G Y A = B F X F Y comp S F Z A
38 eqid comp D = comp D
39 eqid comp Q = comp Q
40 3 6 12 38 39 26 18 fucco φ A Z Y comp Q X B = z Base C A z 1 st Z z 1 st Y z comp D 1 st X z B z
41 3 fucbas C Func D = Base Q
42 41 39 4 21 22 29 oppcco φ B X Y comp R Z A = A Z Y comp Q X B
43 3 6 39 26 18 fuccocl φ A Z Y comp Q X B Z N X
44 8 21 29 42 43 opf2 φ X G Z B X Y comp R Z A = A Z Y comp Q X B
45 7 21 opf11 φ 1 st F X = 1 st X
46 45 fveq1d φ 1 st F X z = 1 st X z
47 7 22 opf11 φ 1 st F Y = 1 st Y
48 47 fveq1d φ 1 st F Y z = 1 st Y z
49 46 48 opeq12d φ 1 st F X z 1 st F Y z = 1 st X z 1 st Y z
50 7 29 opf11 φ 1 st F Z = 1 st Z
51 50 fveq1d φ 1 st F Z z = 1 st Z z
52 49 51 oveq12d φ 1 st F X z 1 st F Y z comp P 1 st F Z z = 1 st X z 1 st Y z comp P 1 st Z z
53 52 oveqd φ B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z = B z 1 st X z 1 st Y z comp P 1 st Z z A z
54 53 adantr φ z Base C B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z = B z 1 st X z 1 st Y z comp P 1 st Z z A z
55 eqid Base D = Base D
56 21 func1st2nd φ 1 st X C Func D 2 nd X
57 12 55 56 funcf1 φ 1 st X : Base C Base D
58 57 ffvelcdmda φ z Base C 1 st X z Base D
59 22 func1st2nd φ 1 st Y C Func D 2 nd Y
60 12 55 59 funcf1 φ 1 st Y : Base C Base D
61 60 ffvelcdmda φ z Base C 1 st Y z Base D
62 29 func1st2nd φ 1 st Z C Func D 2 nd Z
63 12 55 62 funcf1 φ 1 st Z : Base C Base D
64 63 ffvelcdmda φ z Base C 1 st Z z Base D
65 55 38 2 58 61 64 oppcco φ z Base C B z 1 st X z 1 st Y z comp P 1 st Z z A z = A z 1 st Z z 1 st Y z comp D 1 st X z B z
66 54 65 eqtrd φ z Base C B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z = A z 1 st Z z 1 st Y z comp D 1 st X z B z
67 66 mpteq2dva φ z Base C B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z = z Base C A z 1 st Z z 1 st Y z comp D 1 st X z B z
68 40 44 67 3eqtr4d φ X G Z B X Y comp R Z A = z Base C B z 1 st F X z 1 st F Y z comp P 1 st F Z z A z
69 32 37 68 3eqtr4rd φ X G Z B X Y comp R Z A = Y G Z B F X F Y comp S F Z X G Y A