| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppc.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
fucoppc.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
fucoppc.q |
⊢ 𝑄 = ( 𝐶 FuncCat 𝐷 ) |
| 4 |
|
fucoppc.r |
⊢ 𝑅 = ( oppCat ‘ 𝑄 ) |
| 5 |
|
fucoppc.s |
⊢ 𝑆 = ( 𝑂 FuncCat 𝑃 ) |
| 6 |
|
fucoppc.n |
⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) |
| 7 |
|
fucoppc.f |
⊢ ( 𝜑 → 𝐹 = ( oppFunc ↾ ( 𝐶 Func 𝐷 ) ) ) |
| 8 |
|
fucoppc.g |
⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ ( 𝐶 Func 𝐷 ) , 𝑦 ∈ ( 𝐶 Func 𝐷 ) ↦ ( I ↾ ( 𝑦 𝑁 𝑥 ) ) ) ) |
| 9 |
|
fucoppcco.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) ) |
| 10 |
|
fucoppcco.b |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) ) |
| 11 |
|
eqid |
⊢ ( 𝑂 Nat 𝑃 ) = ( 𝑂 Nat 𝑃 ) |
| 12 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
| 13 |
1 12
|
oppcbas |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝑂 ) |
| 14 |
|
eqid |
⊢ ( comp ‘ 𝑃 ) = ( comp ‘ 𝑃 ) |
| 15 |
|
eqid |
⊢ ( comp ‘ 𝑆 ) = ( comp ‘ 𝑆 ) |
| 16 |
3 6
|
fuchom |
⊢ 𝑁 = ( Hom ‘ 𝑄 ) |
| 17 |
16 4
|
oppchom |
⊢ ( 𝑋 ( Hom ‘ 𝑅 ) 𝑌 ) = ( 𝑌 𝑁 𝑋 ) |
| 18 |
9 17
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑌 𝑁 𝑋 ) ) |
| 19 |
6
|
natrcl |
⊢ ( 𝐴 ∈ ( 𝑌 𝑁 𝑋 ) → ( 𝑌 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝑌 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 21 |
20
|
simprd |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐶 Func 𝐷 ) ) |
| 22 |
20
|
simpld |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) |
| 23 |
1 2 6 7 21 22
|
fucoppclem |
⊢ ( 𝜑 → ( 𝑌 𝑁 𝑋 ) = ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 24 |
18 23
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝐹 ‘ 𝑋 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑌 ) ) ) |
| 25 |
16 4
|
oppchom |
⊢ ( 𝑌 ( Hom ‘ 𝑅 ) 𝑍 ) = ( 𝑍 𝑁 𝑌 ) |
| 26 |
10 25
|
eleqtrdi |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝑍 𝑁 𝑌 ) ) |
| 27 |
6
|
natrcl |
⊢ ( 𝐵 ∈ ( 𝑍 𝑁 𝑌 ) → ( 𝑍 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → ( 𝑍 ∈ ( 𝐶 Func 𝐷 ) ∧ 𝑌 ∈ ( 𝐶 Func 𝐷 ) ) ) |
| 29 |
28
|
simpld |
⊢ ( 𝜑 → 𝑍 ∈ ( 𝐶 Func 𝐷 ) ) |
| 30 |
1 2 6 7 22 29
|
fucoppclem |
⊢ ( 𝜑 → ( 𝑍 𝑁 𝑌 ) = ( ( 𝐹 ‘ 𝑌 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑍 ) ) ) |
| 31 |
26 30
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐹 ‘ 𝑌 ) ( 𝑂 Nat 𝑃 ) ( 𝐹 ‘ 𝑍 ) ) ) |
| 32 |
5 11 13 14 15 24 31
|
fucco |
⊢ ( 𝜑 → ( 𝐵 ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) 𝐴 ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) ) |
| 33 |
|
eqidd |
⊢ ( 𝜑 → 𝐵 = 𝐵 ) |
| 34 |
8 22 29 33 26
|
opf2 |
⊢ ( 𝜑 → ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) = 𝐵 ) |
| 35 |
|
eqidd |
⊢ ( 𝜑 → 𝐴 = 𝐴 ) |
| 36 |
8 21 22 35 18
|
opf2 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) = 𝐴 ) |
| 37 |
34 36
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) = ( 𝐵 ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) 𝐴 ) ) |
| 38 |
|
eqid |
⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) |
| 39 |
|
eqid |
⊢ ( comp ‘ 𝑄 ) = ( comp ‘ 𝑄 ) |
| 40 |
3 6 12 38 39 26 18
|
fucco |
⊢ ( 𝜑 → ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 41 |
3
|
fucbas |
⊢ ( 𝐶 Func 𝐷 ) = ( Base ‘ 𝑄 ) |
| 42 |
41 39 4 21 22 29
|
oppcco |
⊢ ( 𝜑 → ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) = ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ) |
| 43 |
3 6 39 26 18
|
fuccocl |
⊢ ( 𝜑 → ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ∈ ( 𝑍 𝑁 𝑋 ) ) |
| 44 |
8 21 29 42 43
|
opf2 |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( 𝐴 ( 〈 𝑍 , 𝑌 〉 ( comp ‘ 𝑄 ) 𝑋 ) 𝐵 ) ) |
| 45 |
7 21
|
opf11 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 1st ‘ 𝑋 ) ) |
| 46 |
45
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) |
| 47 |
7 22
|
opf11 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) = ( 1st ‘ 𝑌 ) ) |
| 48 |
47
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) ) |
| 49 |
46 48
|
opeq12d |
⊢ ( 𝜑 → 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 = 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ) |
| 50 |
7 29
|
opf11 |
⊢ ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) = ( 1st ‘ 𝑍 ) ) |
| 51 |
50
|
fveq1d |
⊢ ( 𝜑 → ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) = ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) |
| 52 |
49 51
|
oveq12d |
⊢ ( 𝜑 → ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) = ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ) |
| 53 |
52
|
oveqd |
⊢ ( 𝜑 → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) |
| 55 |
|
eqid |
⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) |
| 56 |
21
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑋 ) ) |
| 57 |
12 55 56
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑋 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 58 |
57
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 59 |
22
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑌 ) ) |
| 60 |
12 55 59
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑌 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 61 |
60
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 62 |
29
|
func1st2nd |
⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) ( 𝐶 Func 𝐷 ) ( 2nd ‘ 𝑍 ) ) |
| 63 |
12 55 62
|
funcf1 |
⊢ ( 𝜑 → ( 1st ‘ 𝑍 ) : ( Base ‘ 𝐶 ) ⟶ ( Base ‘ 𝐷 ) ) |
| 64 |
63
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ∈ ( Base ‘ 𝐷 ) ) |
| 65 |
55 38 2 58 61 64
|
oppcco |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) |
| 66 |
54 65
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) = ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) |
| 67 |
66
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐴 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ 𝑍 ) ‘ 𝑧 ) , ( ( 1st ‘ 𝑌 ) ‘ 𝑧 ) 〉 ( comp ‘ 𝐷 ) ( ( 1st ‘ 𝑋 ) ‘ 𝑧 ) ) ( 𝐵 ‘ 𝑧 ) ) ) ) |
| 68 |
40 44 67
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( 𝑧 ∈ ( Base ‘ 𝐶 ) ↦ ( ( 𝐵 ‘ 𝑧 ) ( 〈 ( ( 1st ‘ ( 𝐹 ‘ 𝑋 ) ) ‘ 𝑧 ) , ( ( 1st ‘ ( 𝐹 ‘ 𝑌 ) ) ‘ 𝑧 ) 〉 ( comp ‘ 𝑃 ) ( ( 1st ‘ ( 𝐹 ‘ 𝑍 ) ) ‘ 𝑧 ) ) ( 𝐴 ‘ 𝑧 ) ) ) ) |
| 69 |
32 37 68
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑍 ) ‘ ( 𝐵 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝑅 ) 𝑍 ) 𝐴 ) ) = ( ( ( 𝑌 𝐺 𝑍 ) ‘ 𝐵 ) ( 〈 ( 𝐹 ‘ 𝑋 ) , ( 𝐹 ‘ 𝑌 ) 〉 ( comp ‘ 𝑆 ) ( 𝐹 ‘ 𝑍 ) ) ( ( 𝑋 𝐺 𝑌 ) ‘ 𝐴 ) ) ) |