| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppccic.c |
⊢ 𝐶 = ( CatCat ‘ 𝑈 ) |
| 2 |
|
fucoppccic.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
| 3 |
|
fucoppccic.x |
⊢ 𝑋 = ( oppCat ‘ ( 𝐷 FuncCat 𝐸 ) ) |
| 4 |
|
fucoppccic.y |
⊢ 𝑌 = ( ( oppCat ‘ 𝐷 ) FuncCat ( oppCat ‘ 𝐸 ) ) |
| 5 |
|
fucoppccic.xb |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 6 |
|
fucoppccic.yb |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 7 |
|
fucoppccic.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) |
| 8 |
|
fucoppccic.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) |
| 10 |
1 2
|
elbasfv |
⊢ ( 𝑋 ∈ 𝐵 → 𝑈 ∈ V ) |
| 11 |
1
|
catccat |
⊢ ( 𝑈 ∈ V → 𝐶 ∈ Cat ) |
| 12 |
5 10 11
|
3syl |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 13 |
|
eqid |
⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) |
| 14 |
|
eqid |
⊢ ( oppCat ‘ 𝐸 ) = ( oppCat ‘ 𝐸 ) |
| 15 |
|
eqid |
⊢ ( 𝐷 FuncCat 𝐸 ) = ( 𝐷 FuncCat 𝐸 ) |
| 16 |
|
eqid |
⊢ ( 𝐷 Nat 𝐸 ) = ( 𝐷 Nat 𝐸 ) |
| 17 |
|
eqidd |
⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) = ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ) |
| 18 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) = ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ) |
| 19 |
13 14 15 3 4 16 17 18 1 2 9 7 8 5 6
|
fucoppc |
⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ) |
| 20 |
|
df-br |
⊢ ( ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) ↔ 〈 ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) , ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 21 |
19 20
|
sylib |
⊢ ( 𝜑 → 〈 ( oppFunc ↾ ( 𝐷 Func 𝐸 ) ) , ( 𝑓 ∈ ( 𝐷 Func 𝐸 ) , 𝑔 ∈ ( 𝐷 Func 𝐸 ) ↦ ( I ↾ ( 𝑔 ( 𝐷 Nat 𝐸 ) 𝑓 ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 22 |
9 2 12 5 6 21
|
brcici |
⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |