| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fucoppccic.c |
|- C = ( CatCat ` U ) |
| 2 |
|
fucoppccic.b |
|- B = ( Base ` C ) |
| 3 |
|
fucoppccic.x |
|- X = ( oppCat ` ( D FuncCat E ) ) |
| 4 |
|
fucoppccic.y |
|- Y = ( ( oppCat ` D ) FuncCat ( oppCat ` E ) ) |
| 5 |
|
fucoppccic.xb |
|- ( ph -> X e. B ) |
| 6 |
|
fucoppccic.yb |
|- ( ph -> Y e. B ) |
| 7 |
|
fucoppccic.d |
|- ( ph -> D e. V ) |
| 8 |
|
fucoppccic.e |
|- ( ph -> E e. W ) |
| 9 |
|
eqid |
|- ( Iso ` C ) = ( Iso ` C ) |
| 10 |
1 2
|
elbasfv |
|- ( X e. B -> U e. _V ) |
| 11 |
1
|
catccat |
|- ( U e. _V -> C e. Cat ) |
| 12 |
5 10 11
|
3syl |
|- ( ph -> C e. Cat ) |
| 13 |
|
eqid |
|- ( oppCat ` D ) = ( oppCat ` D ) |
| 14 |
|
eqid |
|- ( oppCat ` E ) = ( oppCat ` E ) |
| 15 |
|
eqid |
|- ( D FuncCat E ) = ( D FuncCat E ) |
| 16 |
|
eqid |
|- ( D Nat E ) = ( D Nat E ) |
| 17 |
|
eqidd |
|- ( ph -> ( oppFunc |` ( D Func E ) ) = ( oppFunc |` ( D Func E ) ) ) |
| 18 |
|
eqidd |
|- ( ph -> ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) = ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) |
| 19 |
13 14 15 3 4 16 17 18 1 2 9 7 8 5 6
|
fucoppc |
|- ( ph -> ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) ) |
| 20 |
|
df-br |
|- ( ( oppFunc |` ( D Func E ) ) ( X ( Iso ` C ) Y ) ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) <-> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) |
| 21 |
19 20
|
sylib |
|- ( ph -> <. ( oppFunc |` ( D Func E ) ) , ( f e. ( D Func E ) , g e. ( D Func E ) |-> ( _I |` ( g ( D Nat E ) f ) ) ) >. e. ( X ( Iso ` C ) Y ) ) |
| 22 |
9 2 12 5 6 21
|
brcici |
|- ( ph -> X ( ~=c ` C ) Y ) |