| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfdiag.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppfdiag.p |
|- P = ( oppCat ` D ) |
| 3 |
|
oppfdiag.l |
|- L = ( C DiagFunc D ) |
| 4 |
|
oppfdiag.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
oppfdiag.d |
|- ( ph -> D e. Cat ) |
| 6 |
|
oppfdiag1.f |
|- ( ph -> F = ( oppFunc |` ( D Func C ) ) ) |
| 7 |
|
oppfdiag1.a |
|- A = ( Base ` C ) |
| 8 |
|
oppfdiag1.x |
|- ( ph -> X e. A ) |
| 9 |
|
eqid |
|- ( D FuncCat C ) = ( D FuncCat C ) |
| 10 |
9
|
fucbas |
|- ( D Func C ) = ( Base ` ( D FuncCat C ) ) |
| 11 |
3 4 5 9
|
diagcl |
|- ( ph -> L e. ( C Func ( D FuncCat C ) ) ) |
| 12 |
11
|
func1st2nd |
|- ( ph -> ( 1st ` L ) ( C Func ( D FuncCat C ) ) ( 2nd ` L ) ) |
| 13 |
7 10 12
|
funcf1 |
|- ( ph -> ( 1st ` L ) : A --> ( D Func C ) ) |
| 14 |
13 8
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 15 |
6 14
|
opf11 |
|- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 1st ` ( ( 1st ` L ) ` X ) ) ) |
| 16 |
|
eqid |
|- ( Base ` D ) = ( Base ` D ) |
| 17 |
2 16
|
oppcbas |
|- ( Base ` D ) = ( Base ` P ) |
| 18 |
1 7
|
oppcbas |
|- A = ( Base ` O ) |
| 19 |
|
eqid |
|- ( oppCat ` ( D FuncCat C ) ) = ( oppCat ` ( D FuncCat C ) ) |
| 20 |
1 19 11
|
oppfoppc2 |
|- ( ph -> ( oppFunc ` L ) e. ( O Func ( oppCat ` ( D FuncCat C ) ) ) ) |
| 21 |
|
eqid |
|- ( P FuncCat O ) = ( P FuncCat O ) |
| 22 |
|
eqid |
|- ( D Nat C ) = ( D Nat C ) |
| 23 |
|
eqidd |
|- ( ph -> ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) = ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) ) |
| 24 |
2 1 9 19 21 22 6 23 5 4
|
fucoppcfunc |
|- ( ph -> F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) ) |
| 25 |
|
df-br |
|- ( F ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) <-> <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 26 |
24 25
|
sylib |
|- ( ph -> <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. e. ( ( oppCat ` ( D FuncCat C ) ) Func ( P FuncCat O ) ) ) |
| 27 |
18 20 26 8
|
cofu1 |
|- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) ) |
| 28 |
24
|
func1st |
|- ( ph -> ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) = F ) |
| 29 |
11
|
oppf1 |
|- ( ph -> ( 1st ` ( oppFunc ` L ) ) = ( 1st ` L ) ) |
| 30 |
29
|
fveq1d |
|- ( ph -> ( ( 1st ` ( oppFunc ` L ) ) ` X ) = ( ( 1st ` L ) ` X ) ) |
| 31 |
28 30
|
fveq12d |
|- ( ph -> ( ( 1st ` <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. ) ` ( ( 1st ` ( oppFunc ` L ) ) ` X ) ) = ( F ` ( ( 1st ` L ) ` X ) ) ) |
| 32 |
27 31
|
eqtrd |
|- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) = ( F ` ( ( 1st ` L ) ` X ) ) ) |
| 33 |
21
|
fucbas |
|- ( P Func O ) = ( Base ` ( P FuncCat O ) ) |
| 34 |
20 26
|
cofucl |
|- ( ph -> ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) e. ( O Func ( P FuncCat O ) ) ) |
| 35 |
34
|
func1st2nd |
|- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ) |
| 36 |
18 33 35
|
funcf1 |
|- ( ph -> ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) : A --> ( P Func O ) ) |
| 37 |
36 8
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( <. F , ( m e. ( D Func C ) , n e. ( D Func C ) |-> ( _I |` ( n ( D Nat C ) m ) ) ) >. o.func ( oppFunc ` L ) ) ) ` X ) e. ( P Func O ) ) |
| 38 |
32 37
|
eqeltrrd |
|- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) e. ( P Func O ) ) |
| 39 |
38
|
func1st2nd |
|- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ( P Func O ) ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) ) |
| 40 |
17 18 39
|
funcf1 |
|- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) : ( Base ` D ) --> A ) |
| 41 |
15 40
|
feq1dd |
|- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) : ( Base ` D ) --> A ) |
| 42 |
41
|
ffnd |
|- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) Fn ( Base ` D ) ) |
| 43 |
|
eqid |
|- ( O DiagFunc P ) = ( O DiagFunc P ) |
| 44 |
1
|
oppccat |
|- ( C e. Cat -> O e. Cat ) |
| 45 |
4 44
|
syl |
|- ( ph -> O e. Cat ) |
| 46 |
2
|
oppccat |
|- ( D e. Cat -> P e. Cat ) |
| 47 |
5 46
|
syl |
|- ( ph -> P e. Cat ) |
| 48 |
43 45 47 21
|
diagcl |
|- ( ph -> ( O DiagFunc P ) e. ( O Func ( P FuncCat O ) ) ) |
| 49 |
48
|
func1st2nd |
|- ( ph -> ( 1st ` ( O DiagFunc P ) ) ( O Func ( P FuncCat O ) ) ( 2nd ` ( O DiagFunc P ) ) ) |
| 50 |
18 33 49
|
funcf1 |
|- ( ph -> ( 1st ` ( O DiagFunc P ) ) : A --> ( P Func O ) ) |
| 51 |
50 8
|
ffvelcdmd |
|- ( ph -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) e. ( P Func O ) ) |
| 52 |
51
|
func1st2nd |
|- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ( P Func O ) ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 53 |
17 18 52
|
funcf1 |
|- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) : ( Base ` D ) --> A ) |
| 54 |
53
|
ffnd |
|- ( ph -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) Fn ( Base ` D ) ) |
| 55 |
4
|
adantr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> C e. Cat ) |
| 56 |
5
|
adantr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> D e. Cat ) |
| 57 |
8
|
adantr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> X e. A ) |
| 58 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 59 |
|
simpr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> y e. ( Base ` D ) ) |
| 60 |
3 55 56 7 57 58 16 59
|
diag11 |
|- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` y ) = X ) |
| 61 |
45
|
adantr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> O e. Cat ) |
| 62 |
47
|
adantr |
|- ( ( ph /\ y e. ( Base ` D ) ) -> P e. Cat ) |
| 63 |
|
eqid |
|- ( ( 1st ` ( O DiagFunc P ) ) ` X ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) |
| 64 |
43 61 62 18 57 63 17 59
|
diag11 |
|- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) = X ) |
| 65 |
60 64
|
eqtr4d |
|- ( ( ph /\ y e. ( Base ` D ) ) -> ( ( 1st ` ( ( 1st ` L ) ` X ) ) ` y ) = ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ) |
| 66 |
42 54 65
|
eqfnfvd |
|- ( ph -> ( 1st ` ( ( 1st ` L ) ` X ) ) = ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 67 |
15 66
|
eqtrd |
|- ( ph -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 68 |
17 39
|
funcfn2 |
|- ( ph -> ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 69 |
17 52
|
funcfn2 |
|- ( ph -> ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) Fn ( ( Base ` D ) X. ( Base ` D ) ) ) |
| 70 |
6 14
|
opf12 |
|- ( ph -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ) |
| 71 |
70
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ) |
| 72 |
|
eqid |
|- ( Hom ` D ) = ( Hom ` D ) |
| 73 |
72 2
|
oppchom |
|- ( y ( Hom ` P ) z ) = ( z ( Hom ` D ) y ) |
| 74 |
73
|
a1i |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( Hom ` P ) z ) = ( z ( Hom ` D ) y ) ) |
| 75 |
|
eqid |
|- ( Hom ` P ) = ( Hom ` P ) |
| 76 |
|
eqid |
|- ( Hom ` O ) = ( Hom ` O ) |
| 77 |
39
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ( P Func O ) ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) ) |
| 78 |
|
simprl |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> y e. ( Base ` D ) ) |
| 79 |
|
simprr |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> z e. ( Base ` D ) ) |
| 80 |
17 75 76 77 78 79
|
funcf2 |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) : ( y ( Hom ` P ) z ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 81 |
74 80
|
feq2dd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 82 |
71 81
|
feq1dd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) ` z ) ) ) |
| 83 |
82
|
ffnd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) Fn ( z ( Hom ` D ) y ) ) |
| 84 |
52
|
adantr |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ( P Func O ) ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 85 |
17 75 76 84 78 79
|
funcf2 |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) : ( y ( Hom ` P ) z ) --> ( ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` z ) ) ) |
| 86 |
74 85
|
feq2dd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) : ( z ( Hom ` D ) y ) --> ( ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` y ) ( Hom ` O ) ( ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ` z ) ) ) |
| 87 |
86
|
ffnd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) Fn ( z ( Hom ` D ) y ) ) |
| 88 |
|
eqid |
|- ( Id ` C ) = ( Id ` C ) |
| 89 |
1 88
|
oppcid |
|- ( C e. Cat -> ( Id ` O ) = ( Id ` C ) ) |
| 90 |
4 89
|
syl |
|- ( ph -> ( Id ` O ) = ( Id ` C ) ) |
| 91 |
90
|
fveq1d |
|- ( ph -> ( ( Id ` O ) ` X ) = ( ( Id ` C ) ` X ) ) |
| 92 |
91
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( Id ` O ) ` X ) = ( ( Id ` C ) ` X ) ) |
| 93 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> C e. Cat ) |
| 94 |
93 44
|
syl |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> O e. Cat ) |
| 95 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> D e. Cat ) |
| 96 |
95 46
|
syl |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> P e. Cat ) |
| 97 |
8
|
ad2antrr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> X e. A ) |
| 98 |
78
|
adantr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> y e. ( Base ` D ) ) |
| 99 |
|
eqid |
|- ( Id ` O ) = ( Id ` O ) |
| 100 |
79
|
adantr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> z e. ( Base ` D ) ) |
| 101 |
|
simpr |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> f e. ( z ( Hom ` D ) y ) ) |
| 102 |
101 73
|
eleqtrrdi |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> f e. ( y ( Hom ` P ) z ) ) |
| 103 |
43 94 96 18 97 63 17 98 75 99 100 102
|
diag12 |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ` f ) = ( ( Id ` O ) ` X ) ) |
| 104 |
3 93 95 7 97 58 16 100 72 88 98 101
|
diag12 |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ` f ) = ( ( Id ` C ) ` X ) ) |
| 105 |
92 103 104
|
3eqtr4rd |
|- ( ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) /\ f e. ( z ( Hom ` D ) y ) ) -> ( ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) ` f ) = ( ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ` f ) ) |
| 106 |
83 87 105
|
eqfnfvd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( z ( 2nd ` ( ( 1st ` L ) ` X ) ) y ) = ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ) |
| 107 |
71 106
|
eqtrd |
|- ( ( ph /\ ( y e. ( Base ` D ) /\ z e. ( Base ` D ) ) ) -> ( y ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) z ) = ( y ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) z ) ) |
| 108 |
68 69 107
|
eqfnovd |
|- ( ph -> ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) = ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) ) |
| 109 |
67 108
|
opeq12d |
|- ( ph -> <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
| 110 |
|
relfunc |
|- Rel ( P Func O ) |
| 111 |
|
1st2nd |
|- ( ( Rel ( P Func O ) /\ ( F ` ( ( 1st ` L ) ` X ) ) e. ( P Func O ) ) -> ( F ` ( ( 1st ` L ) ` X ) ) = <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. ) |
| 112 |
110 38 111
|
sylancr |
|- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) = <. ( 1st ` ( F ` ( ( 1st ` L ) ` X ) ) ) , ( 2nd ` ( F ` ( ( 1st ` L ) ` X ) ) ) >. ) |
| 113 |
|
1st2nd |
|- ( ( Rel ( P Func O ) /\ ( ( 1st ` ( O DiagFunc P ) ) ` X ) e. ( P Func O ) ) -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
| 114 |
110 51 113
|
sylancr |
|- ( ph -> ( ( 1st ` ( O DiagFunc P ) ) ` X ) = <. ( 1st ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) , ( 2nd ` ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) >. ) |
| 115 |
109 112 114
|
3eqtr4d |
|- ( ph -> ( F ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |