Metamath Proof Explorer


Theorem oppfdiag1a

Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfdiag.o
|- O = ( oppCat ` C )
oppfdiag.p
|- P = ( oppCat ` D )
oppfdiag.l
|- L = ( C DiagFunc D )
oppfdiag.c
|- ( ph -> C e. Cat )
oppfdiag.d
|- ( ph -> D e. Cat )
oppfdiag1a.a
|- A = ( Base ` C )
oppfdiag1a.x
|- ( ph -> X e. A )
Assertion oppfdiag1a
|- ( ph -> ( oppFunc ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) )

Proof

Step Hyp Ref Expression
1 oppfdiag.o
 |-  O = ( oppCat ` C )
2 oppfdiag.p
 |-  P = ( oppCat ` D )
3 oppfdiag.l
 |-  L = ( C DiagFunc D )
4 oppfdiag.c
 |-  ( ph -> C e. Cat )
5 oppfdiag.d
 |-  ( ph -> D e. Cat )
6 oppfdiag1a.a
 |-  A = ( Base ` C )
7 oppfdiag1a.x
 |-  ( ph -> X e. A )
8 eqid
 |-  ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X )
9 3 4 5 6 7 8 diag1cl
 |-  ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) )
10 9 fvresd
 |-  ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( oppFunc ` ( ( 1st ` L ) ` X ) ) )
11 eqidd
 |-  ( ph -> ( oppFunc |` ( D Func C ) ) = ( oppFunc |` ( D Func C ) ) )
12 1 2 3 4 5 11 6 7 oppfdiag1
 |-  ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) )
13 10 12 eqtr3d
 |-  ( ph -> ( oppFunc ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) )