| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfdiag.o |
|- O = ( oppCat ` C ) |
| 2 |
|
oppfdiag.p |
|- P = ( oppCat ` D ) |
| 3 |
|
oppfdiag.l |
|- L = ( C DiagFunc D ) |
| 4 |
|
oppfdiag.c |
|- ( ph -> C e. Cat ) |
| 5 |
|
oppfdiag.d |
|- ( ph -> D e. Cat ) |
| 6 |
|
oppfdiag1a.a |
|- A = ( Base ` C ) |
| 7 |
|
oppfdiag1a.x |
|- ( ph -> X e. A ) |
| 8 |
|
eqid |
|- ( ( 1st ` L ) ` X ) = ( ( 1st ` L ) ` X ) |
| 9 |
3 4 5 6 7 8
|
diag1cl |
|- ( ph -> ( ( 1st ` L ) ` X ) e. ( D Func C ) ) |
| 10 |
9
|
fvresd |
|- ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( oppFunc ` ( ( 1st ` L ) ` X ) ) ) |
| 11 |
|
eqidd |
|- ( ph -> ( oppFunc |` ( D Func C ) ) = ( oppFunc |` ( D Func C ) ) ) |
| 12 |
1 2 3 4 5 11 6 7
|
oppfdiag1 |
|- ( ph -> ( ( oppFunc |` ( D Func C ) ) ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |
| 13 |
10 12
|
eqtr3d |
|- ( ph -> ( oppFunc ` ( ( 1st ` L ) ` X ) ) = ( ( 1st ` ( O DiagFunc P ) ) ` X ) ) |