| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oppfdiag.o |
⊢ 𝑂 = ( oppCat ‘ 𝐶 ) |
| 2 |
|
oppfdiag.p |
⊢ 𝑃 = ( oppCat ‘ 𝐷 ) |
| 3 |
|
oppfdiag.l |
⊢ 𝐿 = ( 𝐶 Δfunc 𝐷 ) |
| 4 |
|
oppfdiag.c |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 5 |
|
oppfdiag.d |
⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 6 |
|
oppfdiag1a.a |
⊢ 𝐴 = ( Base ‘ 𝐶 ) |
| 7 |
|
oppfdiag1a.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 8 |
|
eqid |
⊢ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) = ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) |
| 9 |
3 4 5 6 7 8
|
diag1cl |
⊢ ( 𝜑 → ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) ) |
| 10 |
9
|
fvresd |
⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( oppFunc ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) ) |
| 11 |
|
eqidd |
⊢ ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ) |
| 12 |
1 2 3 4 5 11 6 7
|
oppfdiag1 |
⊢ ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) |
| 13 |
10 12
|
eqtr3d |
⊢ ( 𝜑 → ( oppFunc ‘ ( ( 1st ‘ 𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) |