Metamath Proof Explorer


Theorem oppfdiag1a

Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfdiag.o 𝑂 = ( oppCat ‘ 𝐶 )
oppfdiag.p 𝑃 = ( oppCat ‘ 𝐷 )
oppfdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
oppfdiag.c ( 𝜑𝐶 ∈ Cat )
oppfdiag.d ( 𝜑𝐷 ∈ Cat )
oppfdiag1a.a 𝐴 = ( Base ‘ 𝐶 )
oppfdiag1a.x ( 𝜑𝑋𝐴 )
Assertion oppfdiag1a ( 𝜑 → ( oppFunc ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 oppfdiag.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppfdiag.p 𝑃 = ( oppCat ‘ 𝐷 )
3 oppfdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
4 oppfdiag.c ( 𝜑𝐶 ∈ Cat )
5 oppfdiag.d ( 𝜑𝐷 ∈ Cat )
6 oppfdiag1a.a 𝐴 = ( Base ‘ 𝐶 )
7 oppfdiag1a.x ( 𝜑𝑋𝐴 )
8 eqid ( ( 1st𝐿 ) ‘ 𝑋 ) = ( ( 1st𝐿 ) ‘ 𝑋 )
9 3 4 5 6 7 8 diag1cl ( 𝜑 → ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) )
10 9 fvresd ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( oppFunc ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
11 eqidd ( 𝜑 → ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) )
12 1 2 3 4 5 11 6 7 oppfdiag1 ( 𝜑 → ( ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) )
13 10 12 eqtr3d ( 𝜑 → ( oppFunc ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) )