Metamath Proof Explorer


Theorem oppfdiag1

Description: A constant functor for opposite categories is the opposite functor of the constant functor for original categories. (Contributed by Zhi Wang, 19-Nov-2025)

Ref Expression
Hypotheses oppfdiag.o 𝑂 = ( oppCat ‘ 𝐶 )
oppfdiag.p 𝑃 = ( oppCat ‘ 𝐷 )
oppfdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
oppfdiag.c ( 𝜑𝐶 ∈ Cat )
oppfdiag.d ( 𝜑𝐷 ∈ Cat )
oppfdiag1.f ( 𝜑𝐹 = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) )
oppfdiag1.a 𝐴 = ( Base ‘ 𝐶 )
oppfdiag1.x ( 𝜑𝑋𝐴 )
Assertion oppfdiag1 ( 𝜑 → ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 oppfdiag.o 𝑂 = ( oppCat ‘ 𝐶 )
2 oppfdiag.p 𝑃 = ( oppCat ‘ 𝐷 )
3 oppfdiag.l 𝐿 = ( 𝐶 Δfunc 𝐷 )
4 oppfdiag.c ( 𝜑𝐶 ∈ Cat )
5 oppfdiag.d ( 𝜑𝐷 ∈ Cat )
6 oppfdiag1.f ( 𝜑𝐹 = ( oppFunc ↾ ( 𝐷 Func 𝐶 ) ) )
7 oppfdiag1.a 𝐴 = ( Base ‘ 𝐶 )
8 oppfdiag1.x ( 𝜑𝑋𝐴 )
9 eqid ( 𝐷 FuncCat 𝐶 ) = ( 𝐷 FuncCat 𝐶 )
10 9 fucbas ( 𝐷 Func 𝐶 ) = ( Base ‘ ( 𝐷 FuncCat 𝐶 ) )
11 3 4 5 9 diagcl ( 𝜑𝐿 ∈ ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) )
12 11 func1st2nd ( 𝜑 → ( 1st𝐿 ) ( 𝐶 Func ( 𝐷 FuncCat 𝐶 ) ) ( 2nd𝐿 ) )
13 7 10 12 funcf1 ( 𝜑 → ( 1st𝐿 ) : 𝐴 ⟶ ( 𝐷 Func 𝐶 ) )
14 13 8 ffvelcdmd ( 𝜑 → ( ( 1st𝐿 ) ‘ 𝑋 ) ∈ ( 𝐷 Func 𝐶 ) )
15 6 14 opf11 ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) = ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
16 eqid ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 )
17 2 16 oppcbas ( Base ‘ 𝐷 ) = ( Base ‘ 𝑃 )
18 1 7 oppcbas 𝐴 = ( Base ‘ 𝑂 )
19 eqid ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) = ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) )
20 1 19 11 oppfoppc2 ( 𝜑 → ( oppFunc ‘ 𝐿 ) ∈ ( 𝑂 Func ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) ) )
21 eqid ( 𝑃 FuncCat 𝑂 ) = ( 𝑃 FuncCat 𝑂 )
22 eqid ( 𝐷 Nat 𝐶 ) = ( 𝐷 Nat 𝐶 )
23 eqidd ( 𝜑 → ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) = ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) )
24 2 1 9 19 21 22 6 23 5 4 fucoppcfunc ( 𝜑𝐹 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) )
25 df-br ( 𝐹 ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ↔ ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) )
26 24 25 sylib ( 𝜑 → ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∈ ( ( oppCat ‘ ( 𝐷 FuncCat 𝐶 ) ) Func ( 𝑃 FuncCat 𝑂 ) ) )
27 18 20 26 8 cofu1 ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑋 ) = ( ( 1st ‘ ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ) ‘ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑋 ) ) )
28 24 func1st ( 𝜑 → ( 1st ‘ ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ) = 𝐹 )
29 11 oppf1 ( 𝜑 → ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) = ( 1st𝐿 ) )
30 29 fveq1d ( 𝜑 → ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑋 ) = ( ( 1st𝐿 ) ‘ 𝑋 ) )
31 28 30 fveq12d ( 𝜑 → ( ( 1st ‘ ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ) ‘ ( ( 1st ‘ ( oppFunc ‘ 𝐿 ) ) ‘ 𝑋 ) ) = ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
32 27 31 eqtrd ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑋 ) = ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) )
33 21 fucbas ( 𝑃 Func 𝑂 ) = ( Base ‘ ( 𝑃 FuncCat 𝑂 ) )
34 20 26 cofucl ( 𝜑 → ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) )
35 34 func1st2nd ( 𝜑 → ( 1st ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) )
36 18 33 35 funcf1 ( 𝜑 → ( 1st ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) : 𝐴 ⟶ ( 𝑃 Func 𝑂 ) )
37 36 8 ffvelcdmd ( 𝜑 → ( ( 1st ‘ ( ⟨ 𝐹 , ( 𝑚 ∈ ( 𝐷 Func 𝐶 ) , 𝑛 ∈ ( 𝐷 Func 𝐶 ) ↦ ( I ↾ ( 𝑛 ( 𝐷 Nat 𝐶 ) 𝑚 ) ) ) ⟩ ∘func ( oppFunc ‘ 𝐿 ) ) ) ‘ 𝑋 ) ∈ ( 𝑃 Func 𝑂 ) )
38 32 37 eqeltrrd ( 𝜑 → ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ∈ ( 𝑃 Func 𝑂 ) )
39 38 func1st2nd ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ( 𝑃 Func 𝑂 ) ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
40 17 18 39 funcf1 ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) : ( Base ‘ 𝐷 ) ⟶ 𝐴 )
41 15 40 feq1dd ( 𝜑 → ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) : ( Base ‘ 𝐷 ) ⟶ 𝐴 )
42 41 ffnd ( 𝜑 → ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) Fn ( Base ‘ 𝐷 ) )
43 eqid ( 𝑂 Δfunc 𝑃 ) = ( 𝑂 Δfunc 𝑃 )
44 1 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
45 4 44 syl ( 𝜑𝑂 ∈ Cat )
46 2 oppccat ( 𝐷 ∈ Cat → 𝑃 ∈ Cat )
47 5 46 syl ( 𝜑𝑃 ∈ Cat )
48 43 45 47 21 diagcl ( 𝜑 → ( 𝑂 Δfunc 𝑃 ) ∈ ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) )
49 48 func1st2nd ( 𝜑 → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ( 𝑂 Func ( 𝑃 FuncCat 𝑂 ) ) ( 2nd ‘ ( 𝑂 Δfunc 𝑃 ) ) )
50 18 33 49 funcf1 ( 𝜑 → ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) : 𝐴 ⟶ ( 𝑃 Func 𝑂 ) )
51 50 8 ffvelcdmd ( 𝜑 → ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ∈ ( 𝑃 Func 𝑂 ) )
52 51 func1st2nd ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ( 𝑃 Func 𝑂 ) ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) )
53 17 18 52 funcf1 ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) : ( Base ‘ 𝐷 ) ⟶ 𝐴 )
54 53 ffnd ( 𝜑 → ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) Fn ( Base ‘ 𝐷 ) )
55 4 adantr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐶 ∈ Cat )
56 5 adantr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝐷 ∈ Cat )
57 8 adantr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑋𝐴 )
58 eqid ( ( 1st𝐿 ) ‘ 𝑋 ) = ( ( 1st𝐿 ) ‘ 𝑋 )
59 simpr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) )
60 3 55 56 7 57 58 16 59 diag11 ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑦 ) = 𝑋 )
61 45 adantr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑂 ∈ Cat )
62 47 adantr ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → 𝑃 ∈ Cat )
63 eqid ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 )
64 43 61 62 18 57 63 17 59 diag11 ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑦 ) = 𝑋 )
65 60 64 eqtr4d ( ( 𝜑𝑦 ∈ ( Base ‘ 𝐷 ) ) → ( ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ‘ 𝑦 ) = ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑦 ) )
66 42 54 65 eqfnfvd ( 𝜑 → ( 1st ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) )
67 15 66 eqtrd ( 𝜑 → ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) = ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) )
68 17 39 funcfn2 ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
69 17 52 funcfn2 ( 𝜑 → ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) Fn ( ( Base ‘ 𝐷 ) × ( Base ‘ 𝐷 ) ) )
70 6 14 opf12 ( 𝜑 → ( 𝑦 ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) 𝑧 ) = ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) )
71 70 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) 𝑧 ) = ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) )
72 eqid ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 )
73 72 2 oppchom ( 𝑦 ( Hom ‘ 𝑃 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 )
74 73 a1i ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( Hom ‘ 𝑃 ) 𝑧 ) = ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) )
75 eqid ( Hom ‘ 𝑃 ) = ( Hom ‘ 𝑃 )
76 eqid ( Hom ‘ 𝑂 ) = ( Hom ‘ 𝑂 )
77 39 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ( 𝑃 Func 𝑂 ) ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) )
78 simprl ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) )
79 simprr ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) )
80 17 75 76 77 78 79 funcf2 ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝑃 ) 𝑧 ) ⟶ ( ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑦 ) ( Hom ‘ 𝑂 ) ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑧 ) ) )
81 74 80 feq2dd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑦 ) ( Hom ‘ 𝑂 ) ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑧 ) ) )
82 71 81 feq1dd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) : ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑦 ) ( Hom ‘ 𝑂 ) ( ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ‘ 𝑧 ) ) )
83 82 ffnd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) Fn ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) )
84 52 adantr ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ( 𝑃 Func 𝑂 ) ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) )
85 17 75 76 84 78 79 funcf2 ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) : ( 𝑦 ( Hom ‘ 𝑃 ) 𝑧 ) ⟶ ( ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑦 ) ( Hom ‘ 𝑂 ) ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑧 ) ) )
86 74 85 feq2dd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) : ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ⟶ ( ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑦 ) ( Hom ‘ 𝑂 ) ( ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ‘ 𝑧 ) ) )
87 86 ffnd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) Fn ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) )
88 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
89 1 88 oppcid ( 𝐶 ∈ Cat → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) )
90 4 89 syl ( 𝜑 → ( Id ‘ 𝑂 ) = ( Id ‘ 𝐶 ) )
91 90 fveq1d ( 𝜑 → ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
92 91 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
93 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝐶 ∈ Cat )
94 93 44 syl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑂 ∈ Cat )
95 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝐷 ∈ Cat )
96 95 46 syl ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑃 ∈ Cat )
97 8 ad2antrr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑋𝐴 )
98 78 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑦 ∈ ( Base ‘ 𝐷 ) )
99 eqid ( Id ‘ 𝑂 ) = ( Id ‘ 𝑂 )
100 79 adantr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑧 ∈ ( Base ‘ 𝐷 ) )
101 simpr ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) )
102 101 73 eleqtrrdi ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → 𝑓 ∈ ( 𝑦 ( Hom ‘ 𝑃 ) 𝑧 ) )
103 43 94 96 18 97 63 17 98 75 99 100 102 diag12 ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) ‘ 𝑓 ) = ( ( Id ‘ 𝑂 ) ‘ 𝑋 ) )
104 3 93 95 7 97 58 16 100 72 88 98 101 diag12 ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) )
105 92 103 104 3eqtr4rd ( ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) ∧ 𝑓 ∈ ( 𝑧 ( Hom ‘ 𝐷 ) 𝑦 ) ) → ( ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) ‘ 𝑓 ) = ( ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) ‘ 𝑓 ) )
106 83 87 105 eqfnfvd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑧 ( 2nd ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) 𝑦 ) = ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) )
107 71 106 eqtrd ( ( 𝜑 ∧ ( 𝑦 ∈ ( Base ‘ 𝐷 ) ∧ 𝑧 ∈ ( Base ‘ 𝐷 ) ) ) → ( 𝑦 ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) 𝑧 ) = ( 𝑦 ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) 𝑧 ) )
108 68 69 107 eqfnovd ( 𝜑 → ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) = ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) )
109 67 108 opeq12d ( 𝜑 → ⟨ ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ⟩ = ⟨ ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ⟩ )
110 relfunc Rel ( 𝑃 Func 𝑂 )
111 1st2nd ( ( Rel ( 𝑃 Func 𝑂 ) ∧ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ∈ ( 𝑃 Func 𝑂 ) ) → ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ⟨ ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ⟩ )
112 110 38 111 sylancr ( 𝜑 → ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ⟨ ( 1st ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) , ( 2nd ‘ ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) ) ⟩ )
113 1st2nd ( ( Rel ( 𝑃 Func 𝑂 ) ∧ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ∈ ( 𝑃 Func 𝑂 ) ) → ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) = ⟨ ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ⟩ )
114 110 51 113 sylancr ( 𝜑 → ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) = ⟨ ( 1st ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) , ( 2nd ‘ ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) ) ⟩ )
115 109 112 114 3eqtr4d ( 𝜑 → ( 𝐹 ‘ ( ( 1st𝐿 ) ‘ 𝑋 ) ) = ( ( 1st ‘ ( 𝑂 Δfunc 𝑃 ) ) ‘ 𝑋 ) )