Metamath Proof Explorer
Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
feq2dd.eq |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
feq2dd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
|
Assertion |
feq2dd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
feq2dd.eq |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
feq2dd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
3 |
1
|
feq2d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐶 ↔ 𝐹 : 𝐵 ⟶ 𝐶 ) ) |
4 |
2 3
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) |