Metamath Proof Explorer


Theorem feq2dd

Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses feq2dd.eq φ A = B
feq2dd.f φ F : A C
Assertion feq2dd φ F : B C

Proof

Step Hyp Ref Expression
1 feq2dd.eq φ A = B
2 feq2dd.f φ F : A C
3 1 feq2d φ F : A C F : B C
4 2 3 mpbid φ F : B C