Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Relations and Functions
Functions - misc additions
feq2dd
Next ⟩
feq3dd
Metamath Proof Explorer
Ascii
Unicode
Theorem
feq2dd
Description:
Equality deduction for functions.
(Contributed by
Thierry Arnoux
, 27-May-2025)
Ref
Expression
Hypotheses
feq2dd.eq
⊢
φ
→
A
=
B
feq2dd.f
⊢
φ
→
F
:
A
⟶
C
Assertion
feq2dd
⊢
φ
→
F
:
B
⟶
C
Proof
Step
Hyp
Ref
Expression
1
feq2dd.eq
⊢
φ
→
A
=
B
2
feq2dd.f
⊢
φ
→
F
:
A
⟶
C
3
1
feq2d
⊢
φ
→
F
:
A
⟶
C
↔
F
:
B
⟶
C
4
2
3
mpbid
⊢
φ
→
F
:
B
⟶
C