Metamath Proof Explorer


Theorem feq3dd

Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses feq3dd.eq φ B = C
feq3dd.f φ F : A B
Assertion feq3dd φ F : A C

Proof

Step Hyp Ref Expression
1 feq3dd.eq φ B = C
2 feq3dd.f φ F : A B
3 1 feq3d φ F : A B F : A C
4 2 3 mpbid φ F : A C