Metamath Proof Explorer


Theorem feq3dd

Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses feq3dd.eq
|- ( ph -> B = C )
feq3dd.f
|- ( ph -> F : A --> B )
Assertion feq3dd
|- ( ph -> F : A --> C )

Proof

Step Hyp Ref Expression
1 feq3dd.eq
 |-  ( ph -> B = C )
2 feq3dd.f
 |-  ( ph -> F : A --> B )
3 1 feq3d
 |-  ( ph -> ( F : A --> B <-> F : A --> C ) )
4 2 3 mpbid
 |-  ( ph -> F : A --> C )