Metamath Proof Explorer
Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
feq3dd.eq |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
|
|
feq3dd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
|
Assertion |
feq3dd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
feq3dd.eq |
⊢ ( 𝜑 → 𝐵 = 𝐶 ) |
| 2 |
|
feq3dd.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 3 |
1
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : 𝐴 ⟶ 𝐶 ) ) |
| 4 |
2 3
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐶 ) |