Metamath Proof Explorer


Theorem feq3dd

Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses feq3dd.eq ( 𝜑𝐵 = 𝐶 )
feq3dd.f ( 𝜑𝐹 : 𝐴𝐵 )
Assertion feq3dd ( 𝜑𝐹 : 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 feq3dd.eq ( 𝜑𝐵 = 𝐶 )
2 feq3dd.f ( 𝜑𝐹 : 𝐴𝐵 )
3 1 feq3d ( 𝜑 → ( 𝐹 : 𝐴𝐵𝐹 : 𝐴𝐶 ) )
4 2 3 mpbid ( 𝜑𝐹 : 𝐴𝐶 )