Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | feq2dd.eq | |- ( ph -> A = B ) |
|
feq2dd.f | |- ( ph -> F : A --> C ) |
||
Assertion | feq2dd | |- ( ph -> F : B --> C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2dd.eq | |- ( ph -> A = B ) |
|
2 | feq2dd.f | |- ( ph -> F : A --> C ) |
|
3 | 1 | feq2d | |- ( ph -> ( F : A --> C <-> F : B --> C ) ) |
4 | 2 3 | mpbid | |- ( ph -> F : B --> C ) |