Metamath Proof Explorer


Theorem feq2dd

Description: Equality deduction for functions. (Contributed by Thierry Arnoux, 27-May-2025)

Ref Expression
Hypotheses feq2dd.eq
|- ( ph -> A = B )
feq2dd.f
|- ( ph -> F : A --> C )
Assertion feq2dd
|- ( ph -> F : B --> C )

Proof

Step Hyp Ref Expression
1 feq2dd.eq
 |-  ( ph -> A = B )
2 feq2dd.f
 |-  ( ph -> F : A --> C )
3 1 feq2d
 |-  ( ph -> ( F : A --> C <-> F : B --> C ) )
4 2 3 mpbid
 |-  ( ph -> F : B --> C )