Metamath Proof Explorer


Theorem funcringcsetcALTV2lem4

Description: Lemma 4 for funcringcsetcALTV2 . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV2.r R=RingCatU
funcringcsetcALTV2.s S=SetCatU
funcringcsetcALTV2.b B=BaseR
funcringcsetcALTV2.c C=BaseS
funcringcsetcALTV2.u φUWUni
funcringcsetcALTV2.f φF=xBBasex
funcringcsetcALTV2.g φG=xB,yBIxRingHomy
Assertion funcringcsetcALTV2lem4 φGFnB×B

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV2.r R=RingCatU
2 funcringcsetcALTV2.s S=SetCatU
3 funcringcsetcALTV2.b B=BaseR
4 funcringcsetcALTV2.c C=BaseS
5 funcringcsetcALTV2.u φUWUni
6 funcringcsetcALTV2.f φF=xBBasex
7 funcringcsetcALTV2.g φG=xB,yBIxRingHomy
8 eqid xB,yBIxRingHomy=xB,yBIxRingHomy
9 ovex xRingHomyV
10 id xRingHomyVxRingHomyV
11 10 resiexd xRingHomyVIxRingHomyV
12 9 11 ax-mp IxRingHomyV
13 8 12 fnmpoi xB,yBIxRingHomyFnB×B
14 7 fneq1d φGFnB×BxB,yBIxRingHomyFnB×B
15 13 14 mpbiri φGFnB×B