Metamath Proof Explorer


Theorem funcringcsetclem4ALTV

Description: Lemma 4 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R=RingCatALTVU
funcringcsetcALTV.s S=SetCatU
funcringcsetcALTV.b B=BaseR
funcringcsetcALTV.c C=BaseS
funcringcsetcALTV.u φUWUni
funcringcsetcALTV.f φF=xBBasex
funcringcsetcALTV.g φG=xB,yBIxRingHomy
Assertion funcringcsetclem4ALTV φGFnB×B

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R=RingCatALTVU
2 funcringcsetcALTV.s S=SetCatU
3 funcringcsetcALTV.b B=BaseR
4 funcringcsetcALTV.c C=BaseS
5 funcringcsetcALTV.u φUWUni
6 funcringcsetcALTV.f φF=xBBasex
7 funcringcsetcALTV.g φG=xB,yBIxRingHomy
8 eqid xB,yBIxRingHomy=xB,yBIxRingHomy
9 ovex xRingHomyV
10 id xRingHomyVxRingHomyV
11 10 resiexd xRingHomyVIxRingHomyV
12 9 11 ax-mp IxRingHomyV
13 8 12 fnmpoi xB,yBIxRingHomyFnB×B
14 7 fneq1d φGFnB×BxB,yBIxRingHomyFnB×B
15 13 14 mpbiri φGFnB×B