Metamath Proof Explorer


Theorem funcringcsetclem4ALTV

Description: Lemma 4 for funcringcsetcALTV . (Contributed by AV, 15-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses funcringcsetcALTV.r R = RingCatALTV U
funcringcsetcALTV.s S = SetCat U
funcringcsetcALTV.b B = Base R
funcringcsetcALTV.c C = Base S
funcringcsetcALTV.u φ U WUni
funcringcsetcALTV.f φ F = x B Base x
funcringcsetcALTV.g φ G = x B , y B I x RingHom y
Assertion funcringcsetclem4ALTV φ G Fn B × B

Proof

Step Hyp Ref Expression
1 funcringcsetcALTV.r R = RingCatALTV U
2 funcringcsetcALTV.s S = SetCat U
3 funcringcsetcALTV.b B = Base R
4 funcringcsetcALTV.c C = Base S
5 funcringcsetcALTV.u φ U WUni
6 funcringcsetcALTV.f φ F = x B Base x
7 funcringcsetcALTV.g φ G = x B , y B I x RingHom y
8 eqid x B , y B I x RingHom y = x B , y B I x RingHom y
9 ovex x RingHom y V
10 id x RingHom y V x RingHom y V
11 10 resiexd x RingHom y V I x RingHom y V
12 9 11 ax-mp I x RingHom y V
13 8 12 fnmpoi x B , y B I x RingHom y Fn B × B
14 7 fneq1d φ G Fn B × B x B , y B I x RingHom y Fn B × B
15 13 14 mpbiri φ G Fn B × B