Metamath Proof Explorer


Theorem fv2

Description: Alternate definition of function value. Definition 10.11 of Quine p. 68. (Contributed by NM, 30-Apr-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion fv2 FA=x|yAFyy=x

Proof

Step Hyp Ref Expression
1 df-fv FA=ιy|AFy
2 dfiota2 ιy|AFy=x|yAFyy=x
3 1 2 eqtri FA=x|yAFyy=x