Metamath Proof Explorer


Theorem fveqsb

Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Hypotheses fveqsb.2 x=FAφψ
fveqsb.3 xψ
Assertion fveqsb ∃!yAFyψxyAFyy=xφ

Proof

Step Hyp Ref Expression
1 fveqsb.2 x=FAφψ
2 fveqsb.3 xψ
3 fvex FAV
4 2 1 sbciegf FAV[˙FA/x]˙φψ
5 3 4 ax-mp [˙FA/x]˙φψ
6 fvsb ∃!yAFy[˙FA/x]˙φxyAFyy=xφ
7 5 6 bitr3id ∃!yAFyψxyAFyy=xφ