Metamath Proof Explorer


Theorem fveqsb

Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Hypotheses fveqsb.2
|- ( x = ( F ` A ) -> ( ph <-> ps ) )
fveqsb.3
|- F/ x ps
Assertion fveqsb
|- ( E! y A F y -> ( ps <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 fveqsb.2
 |-  ( x = ( F ` A ) -> ( ph <-> ps ) )
2 fveqsb.3
 |-  F/ x ps
3 fvex
 |-  ( F ` A ) e. _V
4 2 1 sbciegf
 |-  ( ( F ` A ) e. _V -> ( [. ( F ` A ) / x ]. ph <-> ps ) )
5 3 4 ax-mp
 |-  ( [. ( F ` A ) / x ]. ph <-> ps )
6 fvsb
 |-  ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )
7 5 6 bitr3id
 |-  ( E! y A F y -> ( ps <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )