Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fveqsb.2 | |- ( x = ( F ` A ) -> ( ph <-> ps ) ) |
|
| fveqsb.3 | |- F/ x ps |
||
| Assertion | fveqsb | |- ( E! y A F y -> ( ps <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqsb.2 | |- ( x = ( F ` A ) -> ( ph <-> ps ) ) |
|
| 2 | fveqsb.3 | |- F/ x ps |
|
| 3 | fvex | |- ( F ` A ) e. _V |
|
| 4 | 2 1 | sbciegf | |- ( ( F ` A ) e. _V -> ( [. ( F ` A ) / x ]. ph <-> ps ) ) |
| 5 | 3 4 | ax-mp | |- ( [. ( F ` A ) / x ]. ph <-> ps ) |
| 6 | fvsb | |- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
|
| 7 | 5 6 | bitr3id | |- ( E! y A F y -> ( ps <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |