Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fvsb | |- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv | |- ( F ` A ) = ( iota y A F y ) |
|
| 2 | dfsbcq | |- ( ( F ` A ) = ( iota y A F y ) -> ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph ) ) |
|
| 3 | 1 2 | ax-mp | |- ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph ) |
| 4 | iotasbc | |- ( E! y A F y -> ( [. ( iota y A F y ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
|
| 5 | 3 4 | bitrid | |- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |