Metamath Proof Explorer


Theorem fvsb

Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Assertion fvsb
|- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 df-fv
 |-  ( F ` A ) = ( iota y A F y )
2 dfsbcq
 |-  ( ( F ` A ) = ( iota y A F y ) -> ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph ) )
3 1 2 ax-mp
 |-  ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph )
4 iotasbc
 |-  ( E! y A F y -> ( [. ( iota y A F y ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )
5 3 4 syl5bb
 |-  ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) )