Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | fvsb | |- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv | |- ( F ` A ) = ( iota y A F y ) |
|
2 | dfsbcq | |- ( ( F ` A ) = ( iota y A F y ) -> ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph ) ) |
|
3 | 1 2 | ax-mp | |- ( [. ( F ` A ) / x ]. ph <-> [. ( iota y A F y ) / x ]. ph ) |
4 | iotasbc | |- ( E! y A F y -> ( [. ( iota y A F y ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |
|
5 | 3 4 | syl5bb | |- ( E! y A F y -> ( [. ( F ` A ) / x ]. ph <-> E. x ( A. y ( A F y <-> y = x ) /\ ph ) ) ) |