Metamath Proof Explorer


Theorem fvsb

Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Assertion fvsb ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 df-fv ( 𝐹𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 )
2 dfsbcq ( ( 𝐹𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) → ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑[ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 ) )
3 1 2 ax-mp ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑[ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 )
4 iotasbc ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )
5 3 4 syl5bb ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )