Description: Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | fvsb | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv | ⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) | |
2 | dfsbcq | ⊢ ( ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) → ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ [ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 ) |
4 | iotasbc | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) | |
5 | 3 4 | syl5bb | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) |