Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fveqsb.2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) | |
fveqsb.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
Assertion | fveqsb | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝜓 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveqsb.2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝐴 ) → ( 𝜑 ↔ 𝜓 ) ) | |
2 | fveqsb.3 | ⊢ Ⅎ 𝑥 𝜓 | |
3 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
4 | 2 1 | sbciegf | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ V → ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
5 | 3 4 | ax-mp | ⊢ ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ 𝜓 ) |
6 | fvsb | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹 ‘ 𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) | |
7 | 5 6 | bitr3id | ⊢ ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝜓 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦 ↔ 𝑦 = 𝑥 ) ∧ 𝜑 ) ) ) |