Metamath Proof Explorer


Theorem fveqsb

Description: Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011)

Ref Expression
Hypotheses fveqsb.2 ( 𝑥 = ( 𝐹𝐴 ) → ( 𝜑𝜓 ) )
fveqsb.3 𝑥 𝜓
Assertion fveqsb ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝜓 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 fveqsb.2 ( 𝑥 = ( 𝐹𝐴 ) → ( 𝜑𝜓 ) )
2 fveqsb.3 𝑥 𝜓
3 fvex ( 𝐹𝐴 ) ∈ V
4 2 1 sbciegf ( ( 𝐹𝐴 ) ∈ V → ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑𝜓 ) )
5 3 4 ax-mp ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑𝜓 )
6 fvsb ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( [ ( 𝐹𝐴 ) / 𝑥 ] 𝜑 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )
7 5 6 bitr3id ( ∃! 𝑦 𝐴 𝐹 𝑦 → ( 𝜓 ↔ ∃ 𝑥 ( ∀ 𝑦 ( 𝐴 𝐹 𝑦𝑦 = 𝑥 ) ∧ 𝜑 ) ) )