Metamath Proof Explorer


Theorem xpexb

Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)

Ref Expression
Assertion xpexb ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V )

Proof

Step Hyp Ref Expression
1 cnvxp ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 )
2 cnvexg ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ V )
3 1 2 eqeltrrid ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐵 × 𝐴 ) ∈ V )
4 cnvxp ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 )
5 cnvexg ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐵 × 𝐴 ) ∈ V )
6 4 5 eqeltrrid ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ V )
7 3 6 impbii ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V )