Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | xpexb | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) | |
2 | cnvexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ◡ ( 𝐴 × 𝐵 ) ∈ V ) | |
3 | 1 2 | eqeltrrid | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐵 × 𝐴 ) ∈ V ) |
4 | cnvxp | ⊢ ◡ ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) | |
5 | cnvexg | ⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ◡ ( 𝐵 × 𝐴 ) ∈ V ) | |
6 | 4 5 | eqeltrrid | ⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ V ) |
7 | 3 6 | impbii | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V ) |