Description: A Cartesian product exists iff its converse does. Corollary 6.9(1) in TakeutiZaring p. 26. (Contributed by Andrew Salmon, 13-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpexb | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) | |
| 2 | cnvexg | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ◡ ( 𝐴 × 𝐵 ) ∈ V ) | |
| 3 | 1 2 | eqeltrrid | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V → ( 𝐵 × 𝐴 ) ∈ V ) | 
| 4 | cnvxp | ⊢ ◡ ( 𝐵 × 𝐴 ) = ( 𝐴 × 𝐵 ) | |
| 5 | cnvexg | ⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ◡ ( 𝐵 × 𝐴 ) ∈ V ) | |
| 6 | 4 5 | eqeltrrid | ⊢ ( ( 𝐵 × 𝐴 ) ∈ V → ( 𝐴 × 𝐵 ) ∈ V ) | 
| 7 | 3 6 | impbii | ⊢ ( ( 𝐴 × 𝐵 ) ∈ V ↔ ( 𝐵 × 𝐴 ) ∈ V ) |