Metamath Proof Explorer


Theorem fveu

Description: The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017)

Ref Expression
Assertion fveu ∃!xAFxFA=x|AFx

Proof

Step Hyp Ref Expression
1 df-fv FA=ιx|AFx
2 iotauni ∃!xAFxιx|AFx=x|AFx
3 1 2 eqtrid ∃!xAFxFA=x|AFx