Metamath Proof Explorer


Theorem fvmpt2i

Description: Value of a function given by the maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014)

Ref Expression
Hypothesis mptrcl.1 F=xAB
Assertion fvmpt2i xAFx=IB

Proof

Step Hyp Ref Expression
1 mptrcl.1 F=xAB
2 csbeq1 y=xy/xB=x/xB
3 csbid x/xB=B
4 2 3 eqtrdi y=xy/xB=B
5 nfcv _yB
6 nfcsb1v _xy/xB
7 csbeq1a x=yB=y/xB
8 5 6 7 cbvmpt xAB=yAy/xB
9 1 8 eqtri F=yAy/xB
10 4 9 fvmpti xAFx=IB