Metamath Proof Explorer


Theorem fvprcALT

Description: Alternate proof of fvprc using ax-pow instead of ax-pr . (Contributed by NM, 20-May-1998) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion fvprcALT ¬ A V F A =

Proof

Step Hyp Ref Expression
1 brprcneuALT ¬ A V ¬ ∃! x A F x
2 tz6.12-2 ¬ ∃! x A F x F A =
3 1 2 syl ¬ A V F A =