Metamath Proof Explorer


Theorem fvsn

Description: The value of a singleton of an ordered pair is the second member. (Contributed by NM, 12-Aug-1994) (Proof shortened by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsn.1 AV
fvsn.2 BV
Assertion fvsn ABA=B

Proof

Step Hyp Ref Expression
1 fvsn.1 AV
2 fvsn.2 BV
3 fvsng AVBVABA=B
4 1 2 3 mp2an ABA=B