Metamath Proof Explorer


Theorem fvsnun1

Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsnun.1 φAV
fvsnun.2 φBW
fvsnun.3 G=ABFCA
Assertion fvsnun1 φGA=B

Proof

Step Hyp Ref Expression
1 fvsnun.1 φAV
2 fvsnun.2 φBW
3 fvsnun.3 G=ABFCA
4 3 reseq1i GA=ABFCAA
5 resundir ABFCAA=ABAFCAA
6 disjdifr CAA=
7 resdisj CAA=FCAA=
8 6 7 ax-mp FCAA=
9 8 uneq2i ABAFCAA=ABA
10 un0 ABA=ABA
11 9 10 eqtri ABAFCAA=ABA
12 5 11 eqtri ABFCAA=ABA
13 4 12 eqtri GA=ABA
14 13 fveq1i GAA=ABAA
15 snidg AVAA
16 1 15 syl φAA
17 16 fvresd φGAA=GA
18 16 fvresd φABAA=ABA
19 fvsng AVBWABA=B
20 1 2 19 syl2anc φABA=B
21 18 20 eqtrd φABAA=B
22 14 17 21 3eqtr3a φGA=B