Metamath Proof Explorer


Theorem fvsnun2

Description: The value of a function with one of its ordered pairs replaced, at arguments other than the replaced one. See also fvsnun1 . (Contributed by NM, 23-Sep-2007) Put in deduction form. (Revised by BJ, 25-Feb-2023)

Ref Expression
Hypotheses fvsnun.1 φAV
fvsnun.2 φBW
fvsnun.3 G=ABFCA
fvsnun2.4 φDCA
Assertion fvsnun2 φGD=FD

Proof

Step Hyp Ref Expression
1 fvsnun.1 φAV
2 fvsnun.2 φBW
3 fvsnun.3 G=ABFCA
4 fvsnun2.4 φDCA
5 3 reseq1i GCA=ABFCACA
6 5 a1i φGCA=ABFCACA
7 resundir ABFCACA=ABCAFCACA
8 7 a1i φABFCACA=ABCAFCACA
9 disjdif ACA=
10 fnsng AVBWABFnA
11 1 2 10 syl2anc φABFnA
12 fnresdisj ABFnAACA=ABCA=
13 11 12 syl φACA=ABCA=
14 9 13 mpbii φABCA=
15 residm FCACA=FCA
16 15 a1i φFCACA=FCA
17 14 16 uneq12d φABCAFCACA=FCA
18 uncom FCA=FCA
19 18 a1i φFCA=FCA
20 un0 FCA=FCA
21 20 a1i φFCA=FCA
22 17 19 21 3eqtrd φABCAFCACA=FCA
23 6 8 22 3eqtrd φGCA=FCA
24 23 fveq1d φGCAD=FCAD
25 4 fvresd φGCAD=GD
26 4 fvresd φFCAD=FD
27 24 25 26 3eqtr3d φGD=FD