Step |
Hyp |
Ref |
Expression |
1 |
|
fvsnun.1 |
|- ( ph -> A e. V ) |
2 |
|
fvsnun.2 |
|- ( ph -> B e. W ) |
3 |
|
fvsnun.3 |
|- G = ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |
4 |
|
fvsnun2.4 |
|- ( ph -> D e. ( C \ { A } ) ) |
5 |
3
|
reseq1i |
|- ( G |` ( C \ { A } ) ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) |
6 |
5
|
a1i |
|- ( ph -> ( G |` ( C \ { A } ) ) = ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) ) |
7 |
|
resundir |
|- ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) = ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) |
8 |
7
|
a1i |
|- ( ph -> ( ( { <. A , B >. } u. ( F |` ( C \ { A } ) ) ) |` ( C \ { A } ) ) = ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) ) |
9 |
|
disjdif |
|- ( { A } i^i ( C \ { A } ) ) = (/) |
10 |
|
fnsng |
|- ( ( A e. V /\ B e. W ) -> { <. A , B >. } Fn { A } ) |
11 |
1 2 10
|
syl2anc |
|- ( ph -> { <. A , B >. } Fn { A } ) |
12 |
|
fnresdisj |
|- ( { <. A , B >. } Fn { A } -> ( ( { A } i^i ( C \ { A } ) ) = (/) <-> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) ) |
13 |
11 12
|
syl |
|- ( ph -> ( ( { A } i^i ( C \ { A } ) ) = (/) <-> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) ) |
14 |
9 13
|
mpbii |
|- ( ph -> ( { <. A , B >. } |` ( C \ { A } ) ) = (/) ) |
15 |
|
residm |
|- ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) |
16 |
15
|
a1i |
|- ( ph -> ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) ) |
17 |
14 16
|
uneq12d |
|- ( ph -> ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) = ( (/) u. ( F |` ( C \ { A } ) ) ) ) |
18 |
|
uncom |
|- ( (/) u. ( F |` ( C \ { A } ) ) ) = ( ( F |` ( C \ { A } ) ) u. (/) ) |
19 |
18
|
a1i |
|- ( ph -> ( (/) u. ( F |` ( C \ { A } ) ) ) = ( ( F |` ( C \ { A } ) ) u. (/) ) ) |
20 |
|
un0 |
|- ( ( F |` ( C \ { A } ) ) u. (/) ) = ( F |` ( C \ { A } ) ) |
21 |
20
|
a1i |
|- ( ph -> ( ( F |` ( C \ { A } ) ) u. (/) ) = ( F |` ( C \ { A } ) ) ) |
22 |
17 19 21
|
3eqtrd |
|- ( ph -> ( ( { <. A , B >. } |` ( C \ { A } ) ) u. ( ( F |` ( C \ { A } ) ) |` ( C \ { A } ) ) ) = ( F |` ( C \ { A } ) ) ) |
23 |
6 8 22
|
3eqtrd |
|- ( ph -> ( G |` ( C \ { A } ) ) = ( F |` ( C \ { A } ) ) ) |
24 |
23
|
fveq1d |
|- ( ph -> ( ( G |` ( C \ { A } ) ) ` D ) = ( ( F |` ( C \ { A } ) ) ` D ) ) |
25 |
4
|
fvresd |
|- ( ph -> ( ( G |` ( C \ { A } ) ) ` D ) = ( G ` D ) ) |
26 |
4
|
fvresd |
|- ( ph -> ( ( F |` ( C \ { A } ) ) ` D ) = ( F ` D ) ) |
27 |
24 25 26
|
3eqtr3d |
|- ( ph -> ( G ` D ) = ( F ` D ) ) |