Metamath Proof Explorer


Theorem fz0sn0fz1

Description: A finite set of sequential nonnegative integers is the union of the singleton containing 0 and a finite set of sequential positive integers. (Contributed by AV, 20-Mar-2021)

Ref Expression
Assertion fz0sn0fz1 N00N=01N

Proof

Step Hyp Ref Expression
1 0elfz N000N
2 fzsplit 00N0N=000+1N
3 0p1e1 0+1=1
4 3 oveq1i 0+1N=1N
5 4 uneq2i 000+1N=001N
6 2 5 eqtrdi 00N0N=001N
7 1 6 syl N00N=001N
8 0z 0
9 fzsn 000=0
10 8 9 mp1i N000=0
11 10 uneq1d N0001N=01N
12 7 11 eqtrd N00N=01N