Metamath Proof Explorer


Theorem fz0to3un2pr

Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021)

Ref Expression
Assertion fz0to3un2pr 03=0123

Proof

Step Hyp Ref Expression
1 1nn0 10
2 3nn0 30
3 1le3 13
4 elfz2nn0 103103013
5 1 2 3 4 mpbir3an 103
6 fzsplit 10303=011+13
7 5 6 ax-mp 03=011+13
8 1e0p1 1=0+1
9 8 oveq2i 01=00+1
10 0z 0
11 fzpr 000+1=00+1
12 10 11 ax-mp 00+1=00+1
13 0p1e1 0+1=1
14 13 preq2i 00+1=01
15 9 12 14 3eqtri 01=01
16 1p1e2 1+1=2
17 df-3 3=2+1
18 16 17 oveq12i 1+13=22+1
19 2z 2
20 fzpr 222+1=22+1
21 19 20 ax-mp 22+1=22+1
22 2p1e3 2+1=3
23 22 preq2i 22+1=23
24 18 21 23 3eqtri 1+13=23
25 15 24 uneq12i 011+13=0123
26 7 25 eqtri 03=0123