Metamath Proof Explorer


Theorem fzp1elp1

Description: Add one to an element of a finite set of integers. (Contributed by Jeff Madsen, 6-Jun-2010) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzp1elp1 KMNK+1MN+1

Proof

Step Hyp Ref Expression
1 elfzuz KMNKM
2 peano2uz KMK+1M
3 1 2 syl KMNK+1M
4 elfzuz3 KMNNK
5 eluzp1p1 NKN+1K+1
6 4 5 syl KMNN+1K+1
7 elfzuzb K+1MN+1K+1MN+1K+1
8 3 6 7 sylanbrc KMNK+1MN+1