Metamath Proof Explorer


Theorem gchac

Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchac GCH=VCHOICE

Proof

Step Hyp Ref Expression
1 vex xV
2 omex ωV
3 1 2 unex xωV
4 ssun2 ωxω
5 ssdomg xωVωxωωxω
6 3 4 5 mp2 ωxω
7 id GCH=VGCH=V
8 3 7 eleqtrrid GCH=VxωGCH
9 3 pwex 𝒫xωV
10 9 7 eleqtrrid GCH=V𝒫xωGCH
11 gchacg ωxωxωGCH𝒫xωGCH𝒫xωdomcard
12 6 8 10 11 mp3an2i GCH=V𝒫xωdomcard
13 3 canth2 xω𝒫xω
14 sdomdom xω𝒫xωxω𝒫xω
15 13 14 ax-mp xω𝒫xω
16 numdom 𝒫xωdomcardxω𝒫xωxωdomcard
17 12 15 16 sylancl GCH=Vxωdomcard
18 ssun1 xxω
19 ssnum xωdomcardxxωxdomcard
20 17 18 19 sylancl GCH=Vxdomcard
21 1 a1i GCH=VxV
22 20 21 2thd GCH=VxdomcardxV
23 22 eqrdv GCH=Vdomcard=V
24 dfac10 CHOICEdomcard=V
25 23 24 sylibr GCH=VCHOICE