Description: The Generalized Continuum Hypothesis implies the Axiom of Choice. The original proof is due to Sierpiński (1947); we use a refinement of Sierpiński's result due to Specker. (Contributed by Mario Carneiro, 15-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | gchac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex | |
|
2 | omex | |
|
3 | 1 2 | unex | |
4 | ssun2 | |
|
5 | ssdomg | |
|
6 | 3 4 5 | mp2 | |
7 | id | |
|
8 | 3 7 | eleqtrrid | |
9 | 3 | pwex | |
10 | 9 7 | eleqtrrid | |
11 | gchacg | |
|
12 | 6 8 10 11 | mp3an2i | |
13 | 3 | canth2 | |
14 | sdomdom | |
|
15 | 13 14 | ax-mp | |
16 | numdom | |
|
17 | 12 15 16 | sylancl | |
18 | ssun1 | |
|
19 | ssnum | |
|
20 | 17 18 19 | sylancl | |
21 | 1 | a1i | |
22 | 20 21 | 2thd | |
23 | 22 | eqrdv | |
24 | dfac10 | |
|
25 | 23 24 | sylibr | |