Metamath Proof Explorer


Theorem gchen2

Description: If A < B <_ ~P A , and A is an infinite GCH-set, then B = ~P A in cardinality. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchen2 AGCH¬AFinABB𝒫AB𝒫A

Proof

Step Hyp Ref Expression
1 simprr AGCH¬AFinABB𝒫AB𝒫A
2 gchi AGCHABB𝒫AAFin
3 2 3expia AGCHABB𝒫AAFin
4 3 con3dimp AGCHAB¬AFin¬B𝒫A
5 4 an32s AGCH¬AFinAB¬B𝒫A
6 5 adantrr AGCH¬AFinABB𝒫A¬B𝒫A
7 bren2 B𝒫AB𝒫A¬B𝒫A
8 1 6 7 sylanbrc AGCH¬AFinABB𝒫AB𝒫A