Metamath Proof Explorer


Theorem gencbval

Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencbval.1 AV
gencbval.2 A=yφψ
gencbval.3 A=yχθ
gencbval.4 θxχA=y
Assertion gencbval xχφyθψ

Proof

Step Hyp Ref Expression
1 gencbval.1 AV
2 gencbval.2 A=yφψ
3 gencbval.3 A=yχθ
4 gencbval.4 θxχA=y
5 2 notbid A=y¬φ¬ψ
6 1 5 3 4 gencbvex xχ¬φyθ¬ψ
7 exanali xχ¬φ¬xχφ
8 exanali yθ¬ψ¬yθψ
9 6 7 8 3bitr3i ¬xχφ¬yθψ
10 9 con4bii xχφyθψ