Metamath Proof Explorer


Theorem ghomf

Description: Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009)

Ref Expression
Hypotheses ghomf.1 X=ranG
ghomf.2 W=ranH
Assertion ghomf GGrpOpHGrpOpFGGrpOpHomHF:XW

Proof

Step Hyp Ref Expression
1 ghomf.1 X=ranG
2 ghomf.2 W=ranH
3 1 2 elghomOLD GGrpOpHGrpOpFGGrpOpHomHF:XWxXyXFxHFy=FxGy
4 3 simprbda GGrpOpHGrpOpFGGrpOpHomHF:XW
5 4 3impa GGrpOpHGrpOpFGGrpOpHomHF:XW