Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Group homomorphism and isomorphism
ghomf
Next ⟩
ghomco
Metamath Proof Explorer
Ascii
Unicode
Theorem
ghomf
Description:
Mapping property of a group homomorphism.
(Contributed by
Jeff Madsen
, 1-Dec-2009)
Ref
Expression
Hypotheses
ghomf.1
⊢
X
=
ran
⁡
G
ghomf.2
⊢
W
=
ran
⁡
H
Assertion
ghomf
⊢
G
∈
GrpOp
∧
H
∈
GrpOp
∧
F
∈
G
GrpOpHom
H
→
F
:
X
⟶
W
Proof
Step
Hyp
Ref
Expression
1
ghomf.1
⊢
X
=
ran
⁡
G
2
ghomf.2
⊢
W
=
ran
⁡
H
3
1
2
elghomOLD
⊢
G
∈
GrpOp
∧
H
∈
GrpOp
→
F
∈
G
GrpOpHom
H
↔
F
:
X
⟶
W
∧
∀
x
∈
X
∀
y
∈
X
F
⁡
x
H
F
⁡
y
=
F
⁡
x
G
y
4
3
simprbda
⊢
G
∈
GrpOp
∧
H
∈
GrpOp
∧
F
∈
G
GrpOpHom
H
→
F
:
X
⟶
W
5
4
3impa
⊢
G
∈
GrpOp
∧
H
∈
GrpOp
∧
F
∈
G
GrpOpHom
H
→
F
:
X
⟶
W