Metamath Proof Explorer


Theorem gicen

Description: Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Hypotheses gicen.b B=BaseR
gicen.c C=BaseS
Assertion gicen R𝑔SBC

Proof

Step Hyp Ref Expression
1 gicen.b B=BaseR
2 gicen.c C=BaseS
3 brgic R𝑔SRGrpIsoS
4 n0 RGrpIsoSffRGrpIsoS
5 1 2 gimf1o fRGrpIsoSf:B1-1 ontoC
6 1 fvexi BV
7 6 f1oen f:B1-1 ontoCBC
8 5 7 syl fRGrpIsoSBC
9 8 exlimiv ffRGrpIsoSBC
10 4 9 sylbi RGrpIsoSBC
11 3 10 sylbi R𝑔SBC