Metamath Proof Explorer


Theorem gicsym

Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion gicsym R𝑔SS𝑔R

Proof

Step Hyp Ref Expression
1 brgic R𝑔SRGrpIsoS
2 n0 RGrpIsoSffRGrpIsoS
3 gimcnv fRGrpIsoSf-1SGrpIsoR
4 brgici f-1SGrpIsoRS𝑔R
5 3 4 syl fRGrpIsoSS𝑔R
6 5 exlimiv ffRGrpIsoSS𝑔R
7 2 6 sylbi RGrpIsoSS𝑔R
8 1 7 sylbi R𝑔SS𝑔R