Metamath Proof Explorer


Theorem gneispacern

Description: A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacern FAranF𝒫𝒫domF

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispacef FAF:domF𝒫𝒫domF
3 2 frnd FAranF𝒫𝒫domF