Metamath Proof Explorer


Theorem gneispacern2

Description: A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacern2 FAranF𝒫𝒫domF

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 elex FAFV
3 1 gneispace FVFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
4 2 3 syl FAFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
5 4 ibi FAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
6 5 simp2d FAranF𝒫𝒫domF