Metamath Proof Explorer


Theorem gneispace0nelrn

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispace0nelrn F A p dom F F p

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 elex F A F V
3 1 gneispace F V F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
4 2 3 syl F A F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
5 4 ibi F A Fun F ran F 𝒫 𝒫 dom F p dom F F p n F p p n s 𝒫 dom F n s s F p
6 5 simp3d F A p dom F F p n F p p n s 𝒫 dom F n s s F p
7 simpl F p n F p p n s 𝒫 dom F n s s F p F p
8 7 ralimi p dom F F p n F p p n s 𝒫 dom F n s s F p p dom F F p
9 6 8 syl F A p dom F F p