Metamath Proof Explorer


Theorem gneispace0nelrn

Description: A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispace0nelrn FApdomFFp

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 elex FAFV
3 1 gneispace FVFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
4 2 3 syl FAFAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
5 4 ibi FAFunFranF𝒫𝒫domFpdomFFpnFppns𝒫domFnssFp
6 5 simp3d FApdomFFpnFppns𝒫domFnssFp
7 simpl FpnFppns𝒫domFnssFpFp
8 7 ralimi pdomFFpnFppns𝒫domFnssFppdomFFp
9 6 8 syl FApdomFFp