Metamath Proof Explorer


Theorem gneispacess

Description: All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
Assertion gneispacess FApdomFnFps𝒫domFnssFp

Proof

Step Hyp Ref Expression
1 gneispace.a A=f|f:domf𝒫𝒫domfpdomfnfppns𝒫domfnssfp
2 1 gneispace2 FAFAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
3 2 ibi FAF:domF𝒫𝒫domFpdomFnFppns𝒫domFnssFp
4 simpr pns𝒫domFnssFps𝒫domFnssFp
5 4 2ralimi pdomFnFppns𝒫domFnssFppdomFnFps𝒫domFnssFp
6 3 5 simpl2im FApdomFnFps𝒫domFnssFp