Metamath Proof Explorer


Theorem gneispacess2

Description: All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
Assertion gneispacess2 F A P dom F N F P S 𝒫 dom F N S S F P

Proof

Step Hyp Ref Expression
1 gneispace.a A = f | f : dom f 𝒫 𝒫 dom f p dom f n f p p n s 𝒫 dom f n s s f p
2 1 gneispacess F A p dom F n F p s 𝒫 dom F n s s F p
3 fveq2 p = P F p = F P
4 3 eleq2d p = P s F p s F P
5 4 imbi2d p = P n s s F p n s s F P
6 5 ralbidv p = P s 𝒫 dom F n s s F p s 𝒫 dom F n s s F P
7 3 6 raleqbidv p = P n F p s 𝒫 dom F n s s F p n F P s 𝒫 dom F n s s F P
8 7 rspccv p dom F n F p s 𝒫 dom F n s s F p P dom F n F P s 𝒫 dom F n s s F P
9 2 8 syl F A P dom F n F P s 𝒫 dom F n s s F P
10 sseq1 n = N n s N s
11 10 imbi1d n = N n s s F P N s s F P
12 11 ralbidv n = N s 𝒫 dom F n s s F P s 𝒫 dom F N s s F P
13 12 rspccv n F P s 𝒫 dom F n s s F P N F P s 𝒫 dom F N s s F P
14 sseq2 s = S N s N S
15 eleq1 s = S s F P S F P
16 14 15 imbi12d s = S N s s F P N S S F P
17 16 rspccv s 𝒫 dom F N s s F P S 𝒫 dom F N S S F P
18 13 17 syl6 n F P s 𝒫 dom F n s s F P N F P S 𝒫 dom F N S S F P
19 18 3impd n F P s 𝒫 dom F n s s F P N F P S 𝒫 dom F N S S F P
20 9 19 syl6 F A P dom F N F P S 𝒫 dom F N S S F P
21 20 imp31 F A P dom F N F P S 𝒫 dom F N S S F P