Metamath Proof Explorer


Theorem gneispacess2

Description: All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021)

Ref Expression
Hypothesis gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
Assertion gneispacess2 ( ( ( 𝐹𝐴𝑃 ∈ dom 𝐹 ) ∧ ( 𝑁 ∈ ( 𝐹𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆 ) ) → 𝑆 ∈ ( 𝐹𝑃 ) )

Proof

Step Hyp Ref Expression
1 gneispace.a 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓𝑛 ∈ ( 𝑓𝑝 ) ( 𝑝𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛𝑠𝑠 ∈ ( 𝑓𝑝 ) ) ) ) }
2 1 gneispacess ( 𝐹𝐴 → ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) )
3 fveq2 ( 𝑝 = 𝑃 → ( 𝐹𝑝 ) = ( 𝐹𝑃 ) )
4 3 eleq2d ( 𝑝 = 𝑃 → ( 𝑠 ∈ ( 𝐹𝑝 ) ↔ 𝑠 ∈ ( 𝐹𝑃 ) ) )
5 4 imbi2d ( 𝑝 = 𝑃 → ( ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ↔ ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
6 5 ralbidv ( 𝑝 = 𝑃 → ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
7 3 6 raleqbidv ( 𝑝 = 𝑃 → ( ∀ 𝑛 ∈ ( 𝐹𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) ↔ ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
8 7 rspccv ( ∀ 𝑝 ∈ dom 𝐹𝑛 ∈ ( 𝐹𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑝 ) ) → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
9 2 8 syl ( 𝐹𝐴 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
10 sseq1 ( 𝑛 = 𝑁 → ( 𝑛𝑠𝑁𝑠 ) )
11 10 imbi1d ( 𝑛 = 𝑁 → ( ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ↔ ( 𝑁𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
12 11 ralbidv ( 𝑛 = 𝑁 → ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
13 12 rspccv ( ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) → ( 𝑁 ∈ ( 𝐹𝑃 ) → ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ) )
14 sseq2 ( 𝑠 = 𝑆 → ( 𝑁𝑠𝑁𝑆 ) )
15 eleq1 ( 𝑠 = 𝑆 → ( 𝑠 ∈ ( 𝐹𝑃 ) ↔ 𝑆 ∈ ( 𝐹𝑃 ) ) )
16 14 15 imbi12d ( 𝑠 = 𝑆 → ( ( 𝑁𝑠𝑠 ∈ ( 𝐹𝑃 ) ) ↔ ( 𝑁𝑆𝑆 ∈ ( 𝐹𝑃 ) ) ) )
17 16 rspccv ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁𝑠𝑠 ∈ ( 𝐹𝑃 ) ) → ( 𝑆 ∈ 𝒫 dom 𝐹 → ( 𝑁𝑆𝑆 ∈ ( 𝐹𝑃 ) ) ) )
18 13 17 syl6 ( ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) → ( 𝑁 ∈ ( 𝐹𝑃 ) → ( 𝑆 ∈ 𝒫 dom 𝐹 → ( 𝑁𝑆𝑆 ∈ ( 𝐹𝑃 ) ) ) ) )
19 18 3impd ( ∀ 𝑛 ∈ ( 𝐹𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛𝑠𝑠 ∈ ( 𝐹𝑃 ) ) → ( ( 𝑁 ∈ ( 𝐹𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆 ) → 𝑆 ∈ ( 𝐹𝑃 ) ) )
20 9 19 syl6 ( 𝐹𝐴 → ( 𝑃 ∈ dom 𝐹 → ( ( 𝑁 ∈ ( 𝐹𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆 ) → 𝑆 ∈ ( 𝐹𝑃 ) ) ) )
21 20 imp31 ( ( ( 𝐹𝐴𝑃 ∈ dom 𝐹 ) ∧ ( 𝑁 ∈ ( 𝐹𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹𝑁𝑆 ) ) → 𝑆 ∈ ( 𝐹𝑃 ) )