Step |
Hyp |
Ref |
Expression |
1 |
|
gneispace.a |
⊢ 𝐴 = { 𝑓 ∣ ( 𝑓 : dom 𝑓 ⟶ ( 𝒫 ( 𝒫 dom 𝑓 ∖ { ∅ } ) ∖ { ∅ } ) ∧ ∀ 𝑝 ∈ dom 𝑓 ∀ 𝑛 ∈ ( 𝑓 ‘ 𝑝 ) ( 𝑝 ∈ 𝑛 ∧ ∀ 𝑠 ∈ 𝒫 dom 𝑓 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝑓 ‘ 𝑝 ) ) ) ) } |
2 |
1
|
gneispacess |
⊢ ( 𝐹 ∈ 𝐴 → ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( 𝐹 ‘ 𝑝 ) = ( 𝐹 ‘ 𝑃 ) ) |
4 |
3
|
eleq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ↔ 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ↔ ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
6 |
5
|
ralbidv |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
7 |
3 6
|
raleqbidv |
⊢ ( 𝑝 = 𝑃 → ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) ↔ ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
8 |
7
|
rspccv |
⊢ ( ∀ 𝑝 ∈ dom 𝐹 ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑝 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑝 ) ) → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
9 |
2 8
|
syl |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑃 ∈ dom 𝐹 → ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
10 |
|
sseq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ⊆ 𝑠 ↔ 𝑁 ⊆ 𝑠 ) ) |
11 |
10
|
imbi1d |
⊢ ( 𝑛 = 𝑁 → ( ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ↔ ( 𝑁 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ↔ ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
13 |
12
|
rspccv |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) → ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) → ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
14 |
|
sseq2 |
⊢ ( 𝑠 = 𝑆 → ( 𝑁 ⊆ 𝑠 ↔ 𝑁 ⊆ 𝑆 ) ) |
15 |
|
eleq1 |
⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ↔ 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) |
16 |
14 15
|
imbi12d |
⊢ ( 𝑠 = 𝑆 → ( ( 𝑁 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) ↔ ( 𝑁 ⊆ 𝑆 → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
17 |
16
|
rspccv |
⊢ ( ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑁 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) → ( 𝑆 ∈ 𝒫 dom 𝐹 → ( 𝑁 ⊆ 𝑆 → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
18 |
13 17
|
syl6 |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) → ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) → ( 𝑆 ∈ 𝒫 dom 𝐹 → ( 𝑁 ⊆ 𝑆 → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) ) |
19 |
18
|
3impd |
⊢ ( ∀ 𝑛 ∈ ( 𝐹 ‘ 𝑃 ) ∀ 𝑠 ∈ 𝒫 dom 𝐹 ( 𝑛 ⊆ 𝑠 → 𝑠 ∈ ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆 ) → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) |
20 |
9 19
|
syl6 |
⊢ ( 𝐹 ∈ 𝐴 → ( 𝑃 ∈ dom 𝐹 → ( ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆 ) → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) ) ) |
21 |
20
|
imp31 |
⊢ ( ( ( 𝐹 ∈ 𝐴 ∧ 𝑃 ∈ dom 𝐹 ) ∧ ( 𝑁 ∈ ( 𝐹 ‘ 𝑃 ) ∧ 𝑆 ∈ 𝒫 dom 𝐹 ∧ 𝑁 ⊆ 𝑆 ) ) → 𝑆 ∈ ( 𝐹 ‘ 𝑃 ) ) |