Metamath Proof Explorer


Theorem grplactfval

Description: The left group action of element A of group G . (Contributed by Paul Chapman, 18-Mar-2008)

Ref Expression
Hypotheses grplact.1 F=gXaXg+˙a
grplact.2 X=BaseG
Assertion grplactfval AXFA=aXA+˙a

Proof

Step Hyp Ref Expression
1 grplact.1 F=gXaXg+˙a
2 grplact.2 X=BaseG
3 oveq1 g=Ag+˙a=A+˙a
4 3 mpteq2dv g=AaXg+˙a=aXA+˙a
5 4 1 2 mptfvmpt AXFA=aXA+˙a